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1 Executive Summary 
 

The military of the future will increasingly rely upon "information superiority" to 
dominate the battlespace.  Achieving information superiority will require software 
applications that are far larger, far more complex, and far more distributed than 
comparable applications in existence today.   Such systems are highly dynamic, due to 
the physical movement of components, resource loss, changing missions, software 
upgrades, and change of organizational structure.  Understanding the status and behavior 
of evolving systems is a daunting task that is not well addressed by existing tools or 
procedures.  

This project developed and demonstrated a suite of runtime tools to enable this 
understanding.  These tools (collectively called Software Surveyor), are designed to 
dynamically deduce the configuration and behavior of component-based software and to 
reflect that knowledge back into existing (primarily static) architectural models for 
analysis by other tools. 

1.1 Administration 
Participants: 
• Dr. David Wells (PI) 
• Dr. Paul Pazandak 

Project Website:  www.objs.com\DASADA 

This Website contains contact information and links to most of our technical reports.  
This Final Report contains only papers containing the most up to date information on all 
topics.  Additional papers showing intermediate steps we took to get where we are can be 
found our project Website 
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2 Problem Statement 
The military of the future will increasingly rely upon "information superiority" to 
dominate the battlespace.  Achieving information superiority will require software 
applications that are far larger, far more complex, and far more distributed than 
comparable applications in existence today.   Such systems are highly dynamic, due to 
the physical movement of components, resource loss, changing missions, software 
upgrades, and change of organizational structure.  Knowing how such a system is 
currently configured, whether it is behaving as expected, what is causing any problems, 
and how it can be legitimately modified into a better configuration are essential to their 
reliable use.  At present, there are few tools that address any of these issues in large 
systems outside of test harnesses during development.  Valuable as these tools are during 
system development, they provide little help in the field. 

2.1 Objective 
Understanding the status and behavior of evolving systems is a daunting task that is not 
well addressed by existing tools or procedures.  The objective of this project was to 
develop and demonstrate a suite of runtime tools to enable this understanding.  These 
tools (primarily a collection of probes and gauges, collectively called Software Surveyor), 
are designed to dynamically deduce the configuration and behavior of component-based 
software and to reflect that knowledge back into existing (primarily static) architectural 
system models where it can be used by other tools to reason about correctness and 
evolvability.  
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3 Approach 
Few modern software applications are static; their components, and the components’ 
organization with respect to each other, evolve over time as the result of new 
requirements, bug fixes, performance improvements, feature enhancements, and changes 
in their environments as the systems with which they interact change.  Architectural 
models of intended and actual organization and behavior are increasingly used to check 
correctness and as a basis for managing evolution.  However, statically defined models 
are inherently incomplete because of outside influences such as actions by third-party 
software, movement of military units using parts of the application, or degradation of the 
operating environment.   

Dynamically reconfigurable software is radically different from traditional static 
software.  Component replacement is a common occurrence, and components are often 
generated on-the-fly from specifications of client requirements and service provider 
capabilities.  Connections between components are changed frequently by a wide number 
of tool types.  Even the types of the objects/data passed between components are 
malleable; programming language types are typically encoded in XML and reconverted 
for program use by translator tools that operate based on metadata stored in files 
associated with the data.  In consequence, the developer of a software component may 
not know the identity of the other components with which the component will be 
interacting, the types or exact behavior of those components, their location, or even the 
types of the information actually being exchanged.  Not only is it currently difficult or 
impossible to determine how connectivity has been decided, it is often the case that 
critical decisions are made without propagating the knowledge that a decision has even 
been made to the proper authorities.  This combines to make runtime monitoring and 
debugging difficult, and introduces obvious security risks.  Detailed knowledge of actual 
runtime configuration and behavior to complete existing static models is thus essential.   

This requires the following, all addressed by Software Surveyor: 
· A large, diverse, efficient, and flexible collection of probes to gather application 

and environmental data. 
· An extensible collection of gauges to perform the analysis of raw data collected 

by probes. 
· A communications framework to allow interoperation and incremental addition of 

new probes and gauges.  
· A logical connection between the monitoring mechanisms and the architectural 

specifications to allow specifications to be used to drive monitoring and to reflect 
derived information back into the models. 

Appendix A contains papers describing goals and approach in greater detail.
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4 Technical Results 
Technology produced as part of Software Surveyor is discussed below.  Technology falls 
into the broad categories of probes, gauges, event infrastructure, and modeling.  
Appendix B contains papers with additional details and Appendix C contains 
Specification Sheets for key software produced.   Appendix D contains the User Manual 
for ProbeMeister.  Additional information on how to run the various gauges is packaged 
with the release.  

4.1 Probes 
Probes gather low-level application and environmental information.  Most probes are 
designed to work in specific environments, with the type(s) required for a given 
monitoring situation depending upon the data gathering requirements, the application's 
implementation language, source code access, operating environment, and security 
considerations. Thus, runtime profiling requires a diverse set of probes.   We have 
developed a tool, ProbeMeister, to (automatically or under user control) insert probes 
into distributed Java applications at runtime by dynamic bytecode modification.  
ProbeMeister comes with an extensible library of useful probe types and has facilities for 
managing configurations of probes to allow sets of related probes to be managed 
together. ProbeMeister-inserted probes can be removed when no longer required to 
reduce overhead.  With ProbeMeister, generic probes can be used to gather information 
or the user can define custom “probe plugs” in a few lines of Java to collect exactly the 
kinds of information required.  Writing a probe plug requires only minimal Java 
programming skills.  ProbeMeister can be used to instrument application-specific code or 
Java core classes such as File, URL, and I/O stream access which are generically useful 
for monitoring component interactions.   ProbeMeister is compatible with all relevant 
Java standards and has in fact influenced the Java debug interface through interactions 
with Sun developers. 

4.2 Gauges 
Gauges combine monitored events from (potentially) multiple sources into meaningful 
models of application configuration, behavior, and resource consumption.  Examples of 
gauges developed under this project include: a Coalescer that merges streams of 
separately collected event information and renders this information on a timeline; an 
EventMonitor that categorizes events by type and renders HTML- and XML-based dis-
playable summaries with expandable detail; an EventMerger that unifies reports of the 
same event reported at differing levels of abstraction to provide a more complete and 
coherent picture; a StackTracer that converts streams of application events into a trace of 
program execution and emits an XML representation; Historian that archives execution 
traces and computes statistics of behavior; and a Mapper that provides a visualization of 
the time-based relationships between events of an application.  Most gauges are Web-
enabled so that their outputs can be delivered easily to wherever they are needed by 
human operators or other higher-level tools.  Information determined by gauges can be 
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reflected back into architectural specifications using facilities provided by the DASADA 
gauge infrastructure so that models can be kept up to date. 

4.3 Event Infrastructure 
In conjunction with other DASADA projects, we developed and used common event  and 
dissemination mechanisms to allow probes and gauges from a variety of sources to 
interoperate.  These were refined as more probes and gauges were developed and the 
requirements become more clear.  Software Surveyor utilizes these mechanisms.  
Software Surveyor uses the Siena event distribution mechanism (contact Alex Wolf at U-
Colorado for the latest version of Siena).  We do not guarantee that Software Surveyor 
will remain compatible with future versions of Siena. 

4.4 Connecting to Architectural Models 
Architectural models are used in two ways by Software Surveyor.  First, architectural 
models of probes, gauges, and the application can be used to drive gauge and probe 
placement.  A user (or a program) can specify at the model level that a particular property 
of the model is to be monitored.  This drives a process of model combination that results 
in directives to place particular probes and gauges into particular places in the application 
and its environment.  This allows users with familiarity with the application’s overall 
behavior and structure but without knowledge of implementation details to initiate 
monitoring as needed to solve problems in the field.  A second use of architectural 
models by Software Surveyor is that information deduced by gauges can be reflected 
back into the architectural model of the application to allow third-party tools (some of 
which are developed by other DASADA projects) to determine if the system is operating 
within specified bounds and initiate corrective actions if this is not the case.  Model 
feedback was demonstrated as a narrow path concept demonstration.  It is not a mature 
tool at this time.
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5 Demonstrations & Tech Transfer 
Software Surveyor tools have been applied in two annual DASADA demonstrations to an 
intelligence gathering and analysis tool currently in use in the US Navy Pacific 
Command (PACOM).  This provides a technology transition path and, equally 
importantly, forced us to develop probes and gauges that can be applied even when the 
application is incompletely specified (a key goal) and brought to the forefront a number 
of challenging issues related to ambiguity in the precision of the monitored events (a 
simple example is clock skew in distributed applications).  Software Surveyor is now 
mature enough that it can be evaluated in the context of a number of demanding 
applications as part of a planned series of large-scale experiments (described below).  
Appendix E contains more details. 

As part of an expected DASADA Phase II effort to inject DASADA technology 
(including Software Surveyor) into a number of DoD applications and to measure the 
utility of that technology, we supported the efforts of several DoD organizations in 
writing white papers describing potential Phase II activities.   

• PACOM – experiment with the use of DASADA tools in the context of a loosely 
coupled Internet-based intelligence gathering tool called GeoWorlds that is 
currently in use in PACOM 

• TACOM – experiment with the use of DASADA tools in the context of the Future 
Combat System (FCS) as part of managing runtime reconfiguration of on-board 
software in response to battle damage and evolving mission needs 

• AFRL – experiment with the use of DASADA technology in monitoring and 
maintaining the functionality of a Master Caution Panel being developed to manage 
the software in AF Air Operations Centers 

• Common Infrastructure – continued development of a common event dissemination 
and control infrastructure to be shared across Phase II projects to reduce costs and 
enable interoperation 

Three of these efforts were selected for Phase II follow-on, but funding for Phase II was 
withdrawn.  As a result, this work will not be continued at this time.  All white papers 
have been provided to the government, but are not included in this report since they are 
the property of the DoD Service organizations leading the efforts. 

Three potential uses of ProbeMeister in the DASADA UltraLog Program were 
demonstrated to participants in the UltraLog Program.  These uses were: for Red 
Teaming, distributed stress injection and data collection, and distributed debugging of a 
messaging subsystem.  In each case, ProbeMeister was applied to a small, but live 
Cougaar society.  Several groups in UltraLog are evaluating the use of ProbeMeister for 
these purposes. 

ProbeMeister has been downloaded by 5 R&D and assessment groups.  It is currently 
being used for instrumenting an implementation of the Joint Battlespace Infosphere at the 
Air Force Research Laboratory (AFRL).  
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6 Publications and Presentations 
The following papers (see also Appendix) appeared in refereed conferences proceedings: 

• Mapping Cyber Incognito, David Wells and Paul Pazandak, Working Conference on 
Complex and Dynamic Systems Architectures, December 2001, Brisbane, Australia. 

• ProbeMeister: Distributed Runtime Software Instrumentation, Paul Pazandak and 
David Wells, 1st Int'l Workshop on Unanticipated Software Evolution (USE), 
Spain, June 2002. 

The project results have been presented at the following workshops and meetings.  
Copies of the overheads used appear on our Website and were distributed at the meetings. 

• DASADA Kickoff Meeting – Santa Fe, NM, Sept 2000.  

• DASADA Winter PI Meeting - Monterrey, CA, Jan 31 – Feb 2, 2001 

• DASADA Demo Days & PI Meeting – Baltimore, MD, July 2001. 

• Working Conference on Complex and Dynamic Systems Architectures, Brisbane, 
Australia, December 12-14, 2001.   

• DASADA PI Meeting – Brisbane, AU, December, 2001 

• DASADA 2002 Demo Days & PI Meeting – Baltimore, MD, July 2000
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7 Lessons Learned   
7.1 Big Picture & Local Depth are Both Essential 
Monitoring, mapping, and controlling evolving software requires many different kinds of 
tools.  As such, it is necessary to take a “big picture” view of the problem to avoid 
designing a solution to a specific part of the problem that is totally incompatible with 
anything else and is thus not useful.  At the same time, to be useful, the tools have to be 
sufficiently robust that they can address sizable problems and be used by others who are 
not willing to “baby sit” temperamental tools that only work under limited circumstances. 

In this regard, we believe that we accomplished our goals quite well.  We were able to 
demonstrate in a narrow path, a complete cycle using application models to aid in probe 
placement, actual probe insertion, collecting monitored events over a standard bus, 
coalescing and analyzing the monitored events through a small collection of gauges, 
visualizing the gauged information in a user friendly way using Web browsers, and 
feeding the information back into the original models for future use.  At the same time, 
our probe tool (ProbeMeister) is quite mature, is based on Java standards, has been 
evaluated by Sun Java engineers as being compliant, and in fact influenced part of the 
Sun debugging interface.  Many of the gauges are also generally useful on their own. 

7.2 Early Scenarios and Scenario Sharing 
Our coding efforts were most successful after we were able to scope the development 
through a semi-realistic scenario.  Software Surveyor as designed encompasses a wide 
range of capabilities; a far larger number than can reasonably be implemented in a project 
of this size.   The IntelliGauge TIE scenario centered around GeoWorlds allowed us to 
focus on only those techniques required for that scenario, while at the same time 
maintaining consistency with other projects.  Being able to share a test application 
developed by other program participants reduced the work factor, ensured that we were 
not solving artificial problems of our own creation, and having access to the developers 
allowed us to understand their real diagnostic and modeling “care-abouts”.  The fact that 
the test application was being used externally in DoD provided additional realism and a 
tech transfer opportunity. 

7.3 Using Research Quality Software 
As usual when attempting to use other research quality software, the developmental 
maturity of that software was an issue.  The quality of the systems we used varied.  While 
this issue really has no resolution (R&D use of other R&D software is inevitable and 
desirable), a useful thing to keep in mind is that it is desirable to restrict the number of 
such evolving software whenever possible and to use more stable (even if less 
interesting) software when the “bang for the buck” of using the most advanced software 
is limited in a particular context. 
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7.4 Shifting Objectives 
DASADA was plagued by uncertainty about the follow-on Phase II experiments, which 
ultimately were not funded.  In any project, it is very helpful to have a clear idea of 
duration, as this allows better scoping of the design and development activities.  In 
particular, if it is known that a program is terminal, then work is done to reduce the 
number of development activities and to achieve higher quality results with the ones that 
remain. On the other hand, if the project will continue, and especially if the continuation 
is part of a larger experiment, the proper thing to do is to seek the tool coverage necessary 
for the experiments, even if this means that the individual tools are less mature, since 
there will always be time to improve them during to course of the experiments.  This was 
not possible in DASADA.
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8 Conclusions 
We feel that the project was quite successful, although we did not get as far as we had 
hoped.  We are quite satisfied with our overall vision of a closed model-monitor-analyze-
model loop for addressing the complexities of evolving, underspecified systems and the 
fact that we could demonstrate this complete loop in a real example application.  We are 
also very satisfied with the probe software we developed for dynamic monitoring of Java 
programs. ProbeMeister has proven itself to be quite useable and has been employed in a 
variety of ways we had never previously considered, particularly red teaming and stress 
injection for testing.   

We are actively trying to migrate ProbeMeister into a key role in debugging and 
assessing the Cougaar agent architecture as part of the DARPA UltraLog program.  This 
will be an excellent tech transfer vehicle, because not only is Cougaar the underpinnings 
for a future military logistics system, it is also expected to play a key role in the Future 
Combat Systems software. 

We are pursuing additional funding to continue this work, through our UltraLog 
connection and through SBIRs. We are also exploring the commercial potential of 
ProbeMeister.  Continuation of this work is critical to the success of componentware and 
is not being addressed elsewhere.  
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(See also www.objs.com\DASADA for additional documents) 
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A. Project Overviews 
(A-1)  Taming Cyber Incognito, David Wells and Paul Pazandak, 
Working Conference on Complex and Dynamic Systems Architectures, 
December 2001, Brisbane, Australia. 

Abstract: Static models derived from specifications are inherently inadequate for 
capturing the reality of dynamic, reconfigurable software.  Instead, continually updated 
models that combine static and dynamic information about software requirements, 
architectural patterns, components, connectivity, actions, and resource utilization are 
necessary.  The Software Surveyor is an extensible toolkit for collecting, disseminating, 
and analyzing such dynamic information.  The architecture and current status of Software 
Surveyor are presented, and the system’s use is illustrated through an example 
application in the information fusion domain. 



In Proceedings: Working Conference on Complex and Dynamic Systems Architectures, 
Brisbane, Australia, Dec., 2001. 
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Taming Cyber Incognito 
Tools for Surveying Dynamic/Reconfigurable Software 

Landscapes  
 
 

David L. Wells and Paul Pazandak 
Object Services and Consulting, Inc. 

{wells, pazandak}@objs.com 
 
 

Abstract 

Static models derived from specifications are inherently 
inadequate for capturing the reality of dynamic, 
reconfigurable software.  Instead, continually updated 
models that combine static and dynamic information about 
software requirements, architectural patterns, 
components, connectivity, actions, and resource utilization 
are necessary.  The Software Surveyor is an extensible 
toolkit for collecting, disseminating, and analyzing such 
dynamic information.  The architecture and current status 
of Software Surveyor are presented, and the system’s use 
is illustrated through an example application in the 
information fusion domain. 
 

1. Introduction 
The power and flexibility of modern software makes 

the software landscape increasingly a cyber incognita, 
analogous to the terra incognita (unknown territory) that 
baffled explorers, frightened merchants and impeded 
progress hundreds of years ago.  Cyber incognita’s 
equivalent of maps, surveying instruments, and marked 
trails are design specifications, monitoring and diagnostic 
tools, and descriptions of applications’ normative 
behavior; all are as inadequate in cyber incognita today as 
their equivalents were in terra incognita 200 years ago.  
Design specifications are incomplete, inaccurate, or 
inconsistent; software probes cannot observe all 
significant events; techniques to correlate independently 
recorded observations are limited; and descriptions of 
normative behavior are often (especially in Web-based, 
agent, or survivable systems) described as “best effort” 
with no concrete notion of what that means.  Further, the 
dynamic nature of many modern applications means that 
they are continually reorganizing themselves in response 
to changed user demands or resource availability; imagine 
Lewis and Clark having to deal with rivers and mountains 

that changed position every few hours. Hic sunt dracones 
– here are dragons.   

A multi-faceted approach to remedying this situation is 
needed, including: 1) formal, static specifications of 
required/expected behavior, and 2) dynamic, runtime tools 
to flesh out the static specifications and to verify that the 
application is adhering to specifications.  Software 
Surveyor [1], a framework and an extensible set of probes 
and gauges to dynamically deduce the connectivity and 
behavior of evolving, under-specified software 
applications being developed as part of the DARPA 
DASADA Program [2], provides many of the required 
dynamic capabilities and is compatible with the coming 
generation of modeling tools. 

Section 2 of this paper discusses the form and uses of 
application models.  Section 3 argues that static techniques 
are inherently insufficient for modeling modern software, 
while Section 4 discusses how static and dynamic analysis 
together can provide better models and discusses the kinds 
of information that can be obtained from various points in 
the software lifecycle.  Section 5 presents Software 
Surveyor; a suite of architecturally related tools to collect, 
disseminate, and analyze information collected by runtime 
application monitoring.  Section 6 presents an extended 
example of the use of Software Surveyor as applied to a 
loosely coupled Internet information analysis application.  
Section 7 identifies future work. 

2. The Form & Use of 
Models 

A model is an abstraction of a real system that captures 
the essential elements, organization, and activities of that 
system.  Models can define “families of systems” or can 
define a specific instantiation of a system.  The xArch 
system [3] based on the Acme architecture definition 
language (ADL) [4] makes this distinction explicit and 
uses the same modeling language to define models at each 
level. 
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Models can be used to constrain system organization or 
behavior and provide a basis for reasoning about, 
simulating, or validating behavior.  For example: 

How are the components connected?  Do all 
connections meet specifications? Are all required bindings 
satisfied? Are unexpected components present?  Do 
seemingly valid bindings produce expected behavior? 

How, when, and why were the connections made?  
Who/what is responsible for an incorrect binding? Can a 
specific binding be changed? Is some binding tool (e.g., a 
Trader) using a bad selection policy? Are binding 
decisions made consistently? 

What is the physical organization? Where are the 
components physically located? Where are choke points?  
Are untrusted machines being used?  Are components 
vulnerable to physical assault/failure? 

How does the current configuration compare to other 
configurations?  Is the configuration consistent with the 
specification? How does a faulty configuration differ from 
a known good configuration?  What differences exist 
between a currently faulty configuration and a previously 
working configuration? 

Has a configuration changed?  What changed?  What 
process changed it? Was a change authorized?  Did an 
authorized change actually happen?  Does a change 
indicate a possible intrusion or failure? 

Are there unused or unexpected components? This 
provides an opportunity for pruning the configuration to 
reduce footprint, to identify potential viruses and Trojan 
Horses, and to simplify the evolution process by not 
evolving unused modules. 

What are the activity patterns?  Are QoS constraints 
met and are there hot spots?  Are there patterns of 
connection quiescence?  This provides input to resource 
allocation & optimization tools and helps to identify 
“suspicious” activity.  It can also be used to allow unused 
connections to drop safely and identify “windows of 
opportunity” for evolution. 

How are the components interacting?  What functions 
are invoked on the various connections?  This is useful for 
ensuring compliance with specifications, security 
monitoring, and general diagnostics. 

Are there unused functions/methods of libraries/ 
components? This can allow more specific library loading 
to reduce code footprint and simplify evolution by only 
upgrading functionality actually in use. 

A model is inherently an approximation of the system 
being modeled.  The approximation occurs because the 
model suppresses (unnecessary) details or because the 
model is incorrect in some respect(s).  This requires an 
understanding of: 

• What constitutes an  “essential element, 
organization, and activity of the system”.   

• How those items can be determined. 

In this work, we consider componentware; software 
that is assembled by composing immutable, preexisting 
parts, possibly using “glue” software to facilitate the 
composition.  The model of a componentware system is an 
annotated graph, whose nodes correspond to the 
immutable components and whose edges correspond to 
bindings (connections, whether actively used or not) 
between components.  This logical organization 
constitutes the topology of the model.  There is also a 
geometry corresponding to the physical computing, 
storage, and communications resources on which the 
components execute. Both may change over time, and the 
geometry may change while the topology remains constant 
(e.g., a process is relocated) [5]. 

Thus, the following are the salient constructs of a 
configuration: 

• The immutable components 
• The logical connections between 

components (who calls whom & protocols 
used) 

• The resources on which the components 
execute (hardware & software 
environments) 

• The connection medium (physical paths) 
Applications can be profiled at many levels of 

abstraction.  Since the point of modeling is to support 
some set(s) of users, it is appropriate to choose level(s) of 
abstraction that are meaningful to them.  This means that 
the granularity of the model should be such that the 
modeled components are familiar to the users and that use 
of the model can point to practical remedial actions (e.g., 
restart a service, use alternate communications, choose a 
service alternative, do without a non-responsive service) 
that can be taken given the skills and tools available to the 
users.   

Matching the level of abstraction to the actions that can 
be taken is particularly important, since if the proper tools 
are lacking to make a change, a portion of the application 
is immutable to that class of users and therefore should be 
considered as a component from that point of view 
regardless of how complex it might actually be.  For 
instance, modifying the implementation or installation of a 
remote service might not be allowed, but switching to an 
alternate service might be.  In this case, the knowledge 
that the remote service has failed is sufficient; details 
about how and why it failed are of no use and only create 
mental clutter. In Section 6 we will see how these concepts 
are applied in practice. 

Note however, that a model is actually a hypergraph.  
An immutable component in one abstraction may in fact 
expand into a graph of smaller components in a finer-
grained view or a view from a different perspective.  This 
is good, because it again allows viewing a configuration at 
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a useful level of detail for the task at hand.  An implication 
of this is that Software Surveyor must coordinate its 
collection, analysis, and presentation activities based on 
the desired view(s).  This notion is called focus, and is 
discussed further in Section 7. 

3. Why Static 
Modeling is 
Insufficient 

It has always been impossible to completely 
characterize everything important about large, distributed 
applications, but with yesterday’s relatively static 
applications it was possible to specify much of the relevant 
information as part of the design, implementation, or 
deployment processes and then to test in a constrained 
operating environment to ensure that the desired behavior 
was (more or less) achieved prior to actual use.  Often, this 
was not particularly well done (especially when relying on 
multi-source components from vendors with varying 
quality controls and documentation standards), but at least 
there was a hope that with better tools, methodology, or 
training, it could be accomplished.  

However, this is a vain hope with modern, loosely 
coupled software that is often constructed from a mix of 
custom and preexisting components originating from a 
variety of sources.  Individual components can (and 
frequently do) evolve independently due to new 
requirements, bug fixes, performance improvements, and 
feature enhancements.  Field upgrades of deployed code 
(e.g., by providing new libraries) can unwittingly cause 
problems for other programs that had previously been 
performing correctly (e.g., a DLL is upgraded to support 
application A, but causes problems for application B 
which also uses it).  Lack of complete dependency 
information makes it impossible to know what might be 
affected by the upgrade or even to know that a subsequent 
malfunction might be related to a particular change.  New 
components may be introduced, including components that 
are generated on-the-fly from specifications of client 
requirements and service provider capabilities and are 
never seen by a human or subjected to normal testing.  
Even the types of the objects/data passed between 
components are malleable; programming language types 
are typically encoded in XML and later reconstituted for 
program use by translator tools that operate based on 
metadata stored in files associated with the data. 

Flexible architectures with loose inter-module coupling 
has many well known advantages, but in consequence, the 
developer of a component or application may not know the 
identity of all components, the types or exact behavior of 

those components, their location, or even the types of the 
information actually being exchanged.  This makes it very 
difficult to predict the effect of proposed changes, to 
determine why something does not work properly, or even 
to figure out why something works well in one 
environment but does not work in a seemingly comparable 
environment.   

Further, much of the new software is designed to make 
many of its configuration decisions on the fly, depending 
on its environment.  Frequently, these decisions are 
outside the direct control of the application developer.  
This includes mobile code that binds to local instances of 
services, CORBA services that are bound to existing 
servers by a Trader, and survivable systems that 
reconfigure to use remaining resources after attack or 
failure.  Not only is it currently difficult or impossible to 
determine how connectivity has been decided, it is often 
the case that critical decisions are made without 
propagating the knowledge that a decision even has been 
made back to the proper authorities.   

Finally, the operating environment is frequently too 
complex to replicate for testing purposes (imagine 
replicating the Internet to test software that filters and 
streams time-critical data over an open network).    

The key observation is that it is becoming increasingly 
difficult to know in advance how components actually use 
each other due to greater system complexity combined 
with more dynamic configuration choices.  Design 
specifications, architecture descriptions and formal 
methods, configuration information produced during the 
process of instantiating and deploying code, and tools that 
profile systems under development all provide valuable 
information, but even collectively they still leave notable 
gaps in the community’s ability to gather “ground truth” 
about the real-world behavior of distributed, component-
based systems.  A brief examination of these sources of 
information shows why this is so. 

Formal specifications are good for describing desired 
behavior in a way that supports reasoning about system 
properties; however, implementation details are difficult to 
capture this way and formal specifications for externally 
developed components are hard to come by.  Since few 
systems work in isolation from all external components 
(including operating systems and communications 
software), formal specifications are necessarily 
incomplete.   

Software construction tools (compilers, linkers, 
configuration management, etc.) that instantiate and 
manage software generate a large amount of information 
that is generally complete and accurate when produced.  
However, this kind of information suffers from one serious 
shortcoming: it may accurately reflect the connections that 
existed when the software was first created, but there is no 
feedback process to ensure that it remains accurate as the 
system evolves, particularly if the changes were caused by 
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a tool other than the one that produced the initial 
information.  Further, such tools generally only identify 
the static interconnectedness graph of an application and 
not how those interconnections can be used.   

Profiling tools found in software development 
environments do capture some of the dynamic behavior of 
systems.  However, they have serious coverage gaps when 
considered in the context of component-based systems 
where key components are frequently outside the domain 
of the monitoring tools (wrong language, different 
platform, remote) and hence cannot be profiled.  Even 
with integrated development environments that support 
multiple environments and distributed debugging, the 
problem remains that the tools are intended for use during 
the development phase rather than during the entire 
lifecycle of the system and as a result are too complex and 
resource intensive for everyday use with deployed 
systems.   

Real, running component-based systems thus have 
behavior that cannot be adequately described without 
directly observing the behavior of the system “in the 
wild”.  A major thrust of the Software Surveyor project is 
to construct living, constantly updated models of dynamic, 
under-specified applications by combining static 
information about the modeled system with information 
about binding decisions, component execution and 
interactions, and resource use collected during runtime.  
Software Surveyor fills a void left by more traditional tools 
that are employed prior to program use. 

4. Perpetual Modeling 
Information about application structure and behavior 

can be obtained from several sources, including design 
artifacts, application artifacts, runtime monitoring, and 
historical information about prior executions.  However, 
no single source can provide all the information necessary 
to completely profile an application, so it is necessary to 
extract or collect information from all of these sources.  
Collectively, they: 

• Identify the kinds of components and 
interactions that are important enough to 
profile,  

• Provide a conceptual framework in which 
collected information can be organized, 

• Tell where to look to collect the necessary 
information to allow a profile to be 
constructed, 

• Provide expectations to which observed 
organization and behavior can be 
compared. 

4.1 Information Sources 
Design Artifacts:  Design artifacts are descriptions of 

intended configurations and behavior. Static specifications 
limit undesirable behavior and mandate certain desirable 
behaviors.  Static design specifications cannot deal 
adequately with the following kinds of dynamic behavior 
without unduly restricting the benefits of the dynamism: 
dynamic binding decisions by third-party binders, dynamic 
addition, deletion, or movement of independent data 
sources, changes to the schema of independent data 
sources and components, transient behavior.  Static 
specifications cannot be arbitrarily fine grained and cannot 
generally anticipate all environments and conditions in 
which the software may be expected to operate. Further, 
enforcement of many types of design constraints, e.g., 
quality of service, requires runtime monitoring.  

Application Artifacts: There are two kinds of 
application artifacts: information (such as configuration 
and source code files) that are below the level of design 
and are used to further reify the application’s 
configuration, and information that the application 
produces that is generally available without using probes. 
Both may require interpretation to be useful, but are easily 
captured.  In addition to providing concrete information, 
they also indicate which events to look for; i.e., where to 
place probes.  Generally, application artifacts do not 
provide sufficient insight into how the information was 
produced (the job of design artifacts and runtime 
monitoring) or what its purpose is (the job of design 
artifacts).  Also, failures are particularly hard to analyze 
using only application artifacts. Finally, because separate 
executions are often totally independent, it is hard to 
detect anomalies from one execution to another. 

Runtime Monitoring: Runtime monitoring of an 
application and its environment can add details that are left 
unspecified by design specifications and can identify the 
specific elements filling “roles” defined by the design.  
The specific elements might not have existed when the 
design specification was made and/or might be selected by 
third party software outside the control of the application.  
Finally, runtime monitoring is necessary to ensure that 
design constraints are being met.  Runtime monitoring 
cannot tell why a particular event occurred, merely that it 
has.  Interpretation must be with respect to design and 
application artifacts.   

Historical Record: The historical record is the time-
series behavior observed through runtime monitoring of 
multiple executions of the application.  This can be used to 
informally determine expectations of behavior in any of 
the dimensions that can be monitored, and can serve as a 
basis for detecting anomalous behavior.  In a sense, the 
historical record forms a piece of the design specification: 
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“it should work in a certain way because that’s the way it 
always has worked”. 

4.2 Information Profiling  
Profiling requires a diverse set of probes to collect 

information from the sources described above. Thus, a 
variety of probe types are needed to profile even 
reasonably complex applications.  Reasons for using 
different kinds of probes include: 

• Probes are designed to work in specific 
environments. The types of probes that will 
be required for a given deployment will 
depend upon the data gathering 
requirements, the application's 
implementation language, source code 
access, and operating environment.  

• Probes have different information capture 
capability.  Even if environmentally 
compatible, and monitoring the same event, 
different probes may be able to capture 
different information about the event.  For 
example, when a process spawns a child 
process, a new Windows task is created.  
An application-specific or language-
specific probe could capture the arguments 
used to start the new task, but information 
like process-id and memory utilization that 
could be used to externally monitor the task 
are better captured using either 
environmental probes or probes that 
monitor O/S events like process creation. 

• Security and ownership concerns may 
mandate that only certain kinds of probes 
are allowed to be placed and that only 
certain insertion points are possible.  This 
indicates another reason that choices in 
probe technology have value. 

The following artifacts are of interest: 
Component Types: The types of components that are 

significant to the intended users of the gauge outputs.  The 
definition of the components of interest is dictated by the 
level of abstraction at which a particular class of users 
understands and manipulates the application.  See [5] for a 
further discussion of how components of interest are 
determined. Once the interesting classes of components 
are identified, the classes of connections that must be 
profiled become obvious. 

Architectural Patterns: Patterns (in the Gamma [6] 
sense) defining how components of interest can be 
connected together.  Examples are trees, object buses, 
server farms, object factories, etc.  An application may 
employ many patterns.  The key point is that patterns 
define the way in which components will interact in the 
application, not which specific components fill the various 
roles in the patterns.  Architectural patterns provide a 
framework within which components and connections 
may be interpreted.  

Static Connectivity: Mandated connectivity between 
specific components of interest.  This is more precise than 
an architectural pattern, since it specifies more detail and 
identifies particular components filling the various roles. 

Interaction Protocols: The protocols by which 
components of interest are allowed to interact.  Examples 
are HTTP, CORBA, Java RMI, SOAP, email, etc.  Since 
component interactions are a prime place to insert probes, 
protocol documentation can tell where and how those 
probes can be inserted. 

Initial Configuration: When applications are deployed, 
they have some initial configuration defined by 
mechanisms such as configuration files, registries, or the 
like.  Some defaulting may be used to complete a partial 
specification (e.g., localhost is mapped to an IP address).   

Information Output: Most applications produce some 
output in an easily accessible form such as displays, file or 
database writes, or the use of StdOut and StdError.  Such 
output can represent the primary results of the application 
or can be diagnostic.  In general it is easily captured 
without inserting probes directly into the application since 
it is intended to be exposed; however, it frequently 
requires parsing to interpret its meaning. 

Dynamic Components: It is necessary to know the 
components actually in use and desirable to know the set 
of components available for use.  Both can change over 
time.  The available components may be explicitly 
expressed in some kind of registry, may be a set identified 
on-the-fly by a binding mechanism such as a Trader, or be 
generated on-the-fly from specifications (e.g., glueware) 
or from data accessed by the application.  In addition to 
knowing which components are available and in use, it is 
desirable to know why (i.e., by what mechanism) they 
were selected. 

Dynamic Bindings: Component connectivity must be 
tracked over time.  This includes the components 
connected, the roles they play in a connection, and 
how/why the connection was established (e.g., the binding 
agent and the binding arguments). Dynamic bindings must 
be checked for adherence to the architectural patterns 
defined for the application. 

Messaging Activity: This refers to all kinds of 
messaging between the components of interest.  The types 
of these communications are defined by the interaction 
protocols identified elsewhere.  It includes the initial 
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message, response, and any exceptions thrown.  Note that 
exceptions need not be returned to the original caller, as 
the recipient will be defined by the interaction protocol. 

Environment: Required (specified) and actual (sensed) 
environmental properties such as operating system, CPU 
speed, memory, disk, bandwidth, other required software 
should be captured and compared to determine if the 
requirements are met. 

Extra-application resource utilization.  How much of 
various resources are being used by other applications and 
are therefore unavailable to the application of interest?  
This is obviously a dynamic issue, in that the other co-
resident applications will change from execution to 
execution.  This is of interest since it may predict ability of 
the application to meet QoS requirements, user 
expectations (or may make it possible to warn the user that 
the results will be forthcoming, but it may take longer), or 
even the ability of the application to succeed.  Under 
certain load conditions, it may be determined that it would 
be best to defer the execution since it is highly likely that 
it won’t be able to complete. 

Data Accesses: Data access refers to the data sources 
accessed (e.g., a particular database), the arguments used 
in the access (e.g., a query), and the items returned (e.g., 
the specific tuples).  Types of data accesses of frequent 
interest are files, databases, and Web pages.  Application 
behavior can be strongly influenced by file content.  For 
example, the schema for an XML page is generally 
defined in another page containing a DTD or XML 
Schema definition.  This may in turn be used by parsers to 
generate programming language (e.g., Java) objects, so in 
effect the data accesses may cause the generation of new 
components. 

Expectations of Behavior: It is important to know if an 
application is behaving properly. This takes many forms, 
including constraints on (full or partial) results, quality of 
service measurements, resource consumption, or just a 
“feel” that the system is behaving properly based on 
experience with previous uses.  Such information can be 
captured from specifications, the historical record of prior 
executions, and user feedback.  For example, the amount 
of time required to produce a complex result might not be 
formally specifiable, but in practice may fall into a 
relatively small range.  Similarly, a user may know that a 
certain data gathering activity usually produces a certain 
number of “hits” without being able to state precisely why 
this is so.  
 

5. Software Surveyor  
OBJS’ Software Surveyor  is a profiling toolkit to 

dynamically deduce and render the runtime configuration 
and behavior of evolving, component-based software. 
Information is synthesized from multiple sources and 
combined and rendered in a variety of formats and made 
easily accessible via the Web.  

Software Surveyor addresses three distinct 
issues:  
• What is the application doing? 
• What is it supposed to be doing? 
• Is it doing what it is supposed to? 
Software Surveyor requires limited prior knowledge of 

application connectivity and has the ability to dynamically 
deploy probes, allowing its use with dynamically 
reorganizing applications and those lacking complete 
specifications.   The next two subsections discuss the 
design of Software Surveyor and its current 
implementation status.  

5.1 Architecture  
The toolkit uses a three-tiered architecture  (Figure 1) 

for runtime application analysis. The tiers correspond to 
data generation, data dissemination, and data 
consumption/analysis. The probe management 
infrastructure (data generation layer) manages and 
deploys probes to collect a variety of information from the 
running application and its environment. The probes pass 
on the collected information in the form of events to the 
distributed event infrastructure (data dissemination layer). 
This layer is responsible for relaying the events to 
interested subscribers, called gauges, which are part of the 
gauge infrastructure (data consumption layer). The gauges 
merge the event/information streams and make sense of it.  
In addi- 

Figure 1. Software Surveyor 
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tion, results of this analysis are aggregated to identify  
“behavioral norms” to augment incomplete performance 
specifications. Finally, the probe infrastructure and 
behavioral norms can be used to signal users when the 
system is operating anomalously.  

Probe deployment involves the insertion of probes, 
statically or dynamically, into data streams and execution 
flows so they can monitor and report on activity. The 
probe insertion technique will vary depending upon what 
is being instrumented, and when it can be or must be 
instrumented. For example, some probe types (source code 
probes) require precompilation-time insertion, while other 
probe types can be inserted into binary or bytecode at pre-
runtime, or possibly during runtime. 

Probe management is required for activation, 
deactivation, static and dynamic configuration, and probe 
removal.  

Once deployed the probes generate typed information 
streams. We have adopted a basic event classification 
scheme that includes descriptors for type, subtype, and 
probed component name.  This information is used by the 
event infrastructure and gauges for filtering and 
processing. Data emission rates may depend upon the type 
of probe, how it is configured, and the amount of activity 
at the insertion point. For example, one environmental 
probe (e.g. monitoring system activity) may be configured 
to emit resource utilization every 5 seconds, while an 
application probe (e.g. installed into the execution flow) 
may emit data whenever the method it instruments is 
invoked. 

The data emitted by each probe is sent as events to the 
distributed event infrastructure so that it may be 
disseminated to interested gauges for analysis and 
visualization. The event infrastructure will accept data 
from any probe source, allowing Software Surveyor to 
support compatible third party probes. 

Gauges subscribe to events by specifying event types or 
specific qualifying values or conditions based upon 
attribute values contained within the events. They may 
subscribe to multiple event types. Once a gauge receives 
events it may combine data from multiple event streams, 
perform analyses, synthesize new events, render 
visualizations, send feedback to the probes, and pass on 
information to other gauges. 

5.2 Current Implementation 
Status 

The current version of Software Surveyor includes a 
rudimentary probe management infrastructure including a 
probe insertion tool and several types of probes; a 
distributed event server; and several gauges. 

In the initial version of Software Surveyor, we have 
created two types of probes:  

• AppliProbes are used to instrument the 
application, and 

• EnviroProbes are used to collect data from 
the operating environment. 

Our current set of AppliProbes is implemented in Java. 
They are used to instrument both the target application and 
the underlying Java core class library. The probes 
generally emit method invocation arguments and related 
environmental data such as stack traces, invocation time, 
and thread information. Customized probes may emit 
other variables as well. 

A subset of these are precompilation-time probes 
requiring insertion into source code. They are generally 
specific to the target application and are used to extract 
information that could otherwise not be acquired. We have 
also directly instrumented several core Java library classes 
to monitor application-environment communication, such 
as File, URL, and I/O stream access. These instrumented 
classes can be reused for any Java-based application 
monitoring. 

Another subset of AppliProbes used are bytecode 
probes, which are inserted directly into Java bytecode at 
pre-runtime, and to a limited extent during runtime. 
Bytecode probes are inserted using a tool called the Java 
ByteCode Instrumentor (JBCI). 

The Java ByteCode Instrumentor (Figure 2) automates 
the insertion of probes and probe stubs into Java bytecode. 
JBCI modifies .class files by inserting bytecode using 
customizable instrumentation techniques. JBCI can be 
extended with new probes and instrumentation techniques. 
Probes implemented in other languages can be called via 
JNI.  

Figure 2. Java ByteCode Instrumentor  

Our current EnviroProbes call upon operating system 
utilities to gather information on system status and 
resource usage. They monitor system-wide CPU 
utilization, application CPU utilization, and TCP 
bandwidth. They generate events at discrete configurable 
intervals. 
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While the current version of the probe infrastructure 
relies heavily on manually inserted probes, the next 
version will support on-the-fly probe insertion into 
running Java programs.  

The probe-generated events are distributed by the 
SIENA Event Distribution Infrastructure [7].  SIENA uses a 
hierarchical distributed server architecture enabling the 
instrumentation and monitoring of distributed applications. 
Software Surveyor gauges subscribe to and receive events 
from SIENA.  

The current set of gauges include Coalescer, 
EventMonitor, EventMerger, StackTracer, Historian, and 
Mapper. Once they receive events from the event server, 
which contain XML-formatted data, the XML is 
deserialized to first class Java objects for direct 
manipulation (Figure 3).  

Coalescer merges streams of separately collected event 
information and renders this information on a timeline 
chart, performing limited aggregation of events by time 

interval.  
EventMonitor categorizes events by type and renders 

HTML- and XML-based displayable summaries with 
expandable detail.  EventMonitor includes a web server to 
support browser-based access.  It can be configured to 
subscribe to any subset of, or all, published events. 

EventMerger, an extension of EventMonitor, performs 
event unification prior to rendering. Event streams may 
report on the same activities, but at differing levels from 
within the application. EventMerger identifies related 
streams of events by analyzing event content (e.g. stack 
traces, event type/subtype, component names and other 
attribute values).  This can help, for example, to view the 

overall activities of each probed component in the 
application. 

StackTracer converts streams of application events into 
a trace of program execution and emits an XML 
representation.  The events emitted by a probe may be 
generated via several different execution paths involving 
the probed method. This gauge provides insight into 
frequency of invocation along each path. It can also be 
used to filter out paths (and therefore events) so that 
particular application behavior can be isolated for further 
analysis. 

Historian archives execution traces and computes 
statistics of behavior.  

Mapper provides a visualization of the time-based 
relationships between events of an application. 

Software Surveyor v1.0 is implemented in Java 1.3 and 
has been tested under Windows 2000.  v1.0 requires SIENA 
for event distribution.  EnviroProbes is currently available 
only on Win2000 and WinNT. 

6. An Example 
We now illustrate the use of Software Surveyor in the 

construction and maintenance of a continuing application 
model. The selected application, GeoWorlds [8], is an 
Internet information tool that allows intelligence analysts 
to define “scripts” to locate, filter, and organize collections 
of Web-based information.  GeoWorlds is representative 
of a large class of loosely coupled, highly distributed 
applications in which exact configuration and behavior 
cannot be specified a priori.  Third-party components are 
heavily used, configuration and data access decisions are 

 

Figure 3. Software Surveyor Gauges 
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made at runtime by tools outside the direct control of the 
application, and data sources may move, appear, become 
unavailable, and change their schemas without notice.  As 
such, runtime monitoring and evaluation of behavior is 
necessary to provide analysts with high level, 
comprehensible support for determining whether a script is 
likely to work, whether a script is executing properly and 
making reasonable progress, and whether an information 
collection is plausible [9].  

Portions of GeoWorlds can be modeled statically. 
Eventually, the model (both the static and dynamic parts) 
will be represented in the Acme ADL [4]. Representing all 
aspects of the model in this common, mature modeling 
language will allow the use of existing visualization tools 
and will enable the use of architecture analysis tools to 
ensure that the dynamic behavior meets static constraints.  
In the following, significant components and activities 
appear in italics. 

GeoWorlds software consists of a core that resides in a 
JVM and an extensible collection of external services that 
may be in a variety of languages and resident anywhere, 
including within the JVM containing the core.  The 
services manipulate a collection of data sources (mostly 
Web pages) using scripts to produce InfoSpaces.   

The GeoWorlds core consists of a ServiceComposer for 
graphically writing scripts and several job pools for 
scheduling services accessible via different technologies; 
e.g., RMI, CORBA). 

The external services conform to a static architectural 
pattern (a DAG of services); the leaves are Web search 
engines that locate Web content, the internal nodes are 
data manipulation services that filter, extract content and 
organize collections of Web pages, and the roots are 
visualization services that provide different views of the 
InfoSpace.  Information flow between nodes is encoded as 
XML pages describing the InfoSpace and documents as 
processed up to that point.  Each service has input and 
output schema to which they must adhere in order to 
function properly.  Scripts are checked for sanity when 
they are constructed to ensure that input and output 
schema requirements are met, but because services can 
change their schema without notice, this is not always 
accurate. 

Data items of interest are the Web pages manipulated 
by GeoWorlds (both source and pages constructed to 
represent the structure of an information space), and 
ancillary data sources (databases and files) accessed by 
services as part of their own operation (e.g., a database 
mapping place names to lat/long coordinates); these are 
not known to GW and are a key source of bottlenecks and 
errors if bound incorrectly or unavailable. 

The static model of GeoWorlds as described above 
provides the “shape” of the application and identifies the 
kinds of components and activities that must be modeled 
and monitored dynamically.  However, it is clearly 

incomplete, since the services connected together into a 
script are written by analysts in the field and the pages 
accessed, how they flow through the script DAG as they 
are filtered and organized, and the behavior of an 
execution cannot be known until runtime.  

Probes were embedded into the application to collect 
information about events identified by static analysis as 
being relevant; these included service start/stop, URL 
accesses, file accesses, and various initialization events.  
Whenever a probe detected such an event or condition, it 
was published as a SIENA event that could be subscribed to 
by (remote) gauges. The Web-enabled Software Surveyor 
EventMonitor and EventMerger gauges (Figure 4) 
subscribed to these events and created summaries and 
stack traces of application activity that lead to these types 
of events. 

 

Figure 4. Event Monitor & Event Merger Gauges  

Probes were also attached to the environment to 
periodically sample resource utilization of the GeoWorlds 
application and competing background activity.  This 
information was subscribed by the Software Surveyor 
Coalescer, which also subscribed to a subset of the 
application events.  These event streams were woven 
together to associate resource utilization, URL access, and 
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GeoWorlds service activity, creating a timeline of script 
progress (Figure 5). 

  

 
Figure 5. Coalescer Gauge with Mapper Interface 

Finally, information produced by the Coalescer over 
several successful and unsuccessful script executions was 
used to make a first-order approximations to the 
application’s normative behavior under particular 
environmental and scripting assumptions.   

Figure 6 shows the cumulative CPU activity of a 
particular script over time for successful and unsuccessful 
executions of a particular script.  Executions under similar 
conditions, while not identical, tend to be similar, with 
failure having a very distinctive pattern. The objective of 
this is to determine statistically what the application can be 
expected to have accomplished in the way of service 
execution and URL accesses after certain amounts of time 
and resource consumption.  These would in turn be used to 
parameterize future gauges that would warn when 
insufficient progress was being made based on previous 
experience.  
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Figure 6. Historian Gauge  

Monitoring technology will be widely used only if its 
use is easy.  For Software Surveyor, this equates to the 
processes of placing and activating probes, setting up the 
event distribution infrastructure, getting gauges to 
subscribe to the events emitted by the probes on the 
application, and providing convenient viewers for the 
gauge output.   

Mechanically, probe placement is easy.  JBCI probes 
can be placed into Java bytecode using a GUI that presents 
information about the application's classes and allows the 
insertion of standardized probe code into the bytecode.  At 
present, there is a small, but extensible, library of such 
standard bytecode probes (since not many people want to 
actually write bytecode).  Some of the Java core classes 
(particularly those associated with communications) have 
had probes inserted; to use these probes, all that is 
necessary is to link in the modified classes.  Users with 
special needs (and access to application source) are 
welcome to write their own probes taking advantage of 
existing event distribution facilities.  Environmental probe 
use simply requires knowing the process(es) to be 
monitored.  A more complex issue is determining where to 
place probes.  In the example described above, this 
required going through the application's documentation 
and source directories to determine how to draw 
component boundaries and to identify the communications 
mechanisms used by the application.  In next year's 
version of Software Surveyor we plan to experiment with 
the use of architectural models to aid in the process of 
identifying where to place probes. (see Open Issues and 
Next Steps). 

Setting up the event infrastructure is easy.  One or more 
SIENA event servers are started to disseminate events 
signaled by the probes. In addition, each Software 
Surveyor gauge uses a Web server to make gauge results 
available. 

As with probe placement, getting the gauges to 
subscribe to the proper set of events has an easy 
mechanical component and a more difficult modeling 
component that will be dealt with next year.  Subscribing 
to events requires simple calls to the SIENA infrastructure, 
identifying the events of interest to the particular gauge.  
Determining which events to subscribe requires 
knowledge of the kinds of events that might be signaled by 
the probes monitoring the application(s) of interest.  
Again, see Open Issues and Next Steps for a sketch of the 
anticipated model-based solution. 

Finally, gauge output is readily viewable anywhere via 
HTTP using standard browsers. 

7. Open Issues & Next 
steps 

Probe Infrastructure Improvements.  Over the next 
year, we plan to improve the performance, coverage and 
flexibility of the probe infrastructure.   

The Java-based AppliProbes are about as efficient as 
they can be, but the current EnviroProbes are inefficient 
because their use of the facilities of the Windows Alerter 
mandates a needless process switch in order to emit SIENA 
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events; this will be rectified.  Depending on the level of 
abstraction, an application may emit thousands of events 
per second.  This places an excessive load on the event 
distribution layer, particularly if events are being 
subscribed over a WAN.  We are working with the SIENA 
developers and the DASADA Event Infrastructure WG to 
develop a caching scheme that will allow events to be 
batched and transmitted in a group.  This is more 
complicated than it sounds, since simple batching until a 
given number of events are collected may result in 
unacceptable delay in delivering events. Thus, 
transmission must be timed as well as batched.  Further, 
because different subscribers may consume events at 
different rates, batching may be forced to use the lowest 
batching factor and therefore become useless.  We will 
also add the ability to focus the attention of probes on 
areas of interest within the application.  The notion of 
“focus” is discussed further below, but from a 
performance standpoint, the intent is to improve 
performance by reducing the number of events collected. 
This is essential, since no matter how fast the event 
distribution infrastructure is made, it will be possible to 
generate enough events to overwhelm it. 

Coverage will be improved by better support for third-
party probes and gauges and convergence toward a 
common event schema.  Probes implemented in other 
languages can be called via JNI from Java probe stubs, and 
probes to monitor applications in other languages are 
supported by SIENA’s Java and C++ interfaces.  Events are 
currently encoded in XML by many DASADA projects, 
but every project uses its own schema.  A decision was 
made at the start of the project to defer the definition of a 
standard schema until more experience was obtained; a 
first cut at a common schema will be made in the next 
year.  

Adding programmatic interfaces to the probe 
infrastructure will increase flexibility.  This will allow 
activating/deactivating probes and dynamic probe 
placement to expand coverage of an application as it 
evolves.  The next version of JBCI will support on-the-fly 
probe insertion into running programs (without any source 
code access) to support dynamic focus - evolving JBCI 
into a more fully capable Probe management tool.   

Focus.  Focus is the ability to concentrate attention on a 
particular aspect of the system being modeled. Focus has 
several aspects.  

First is presentation; limiting the amount of information 
that is presented to a user so that the information presented 
can be used more easily, in essence trying to eliminate 
information overload.  However, if the consumer of 
monitored information is a gauge, this becomes a non-
issue.   

A second aspect of controlling focus is the ability to 
limit the kinds and amount of information collected in 
order to avoid placing excess load on the event distribution 

infrastructure and affecting application performance by 
signaling too many events. It is advantageous to 
place/activate probes only where needed to fill important 
gaps in the evolving model.  For example, there is no use 
collecting information that cannot be used (either by 
gauges or to take corrective action) or that could equally 
well be determined statically (e.g., why dynamically 
determine that a connection uses TCP/IP if that was 
statically bound and not subject to dynamic change). 

A third issue of focus is to address the issue of 
incomplete probe coverage.  The collection of available 
probes determines how accurately an application can be 
modeled.  Depending on the available types of probes and 
their placement, it may not be possible to profile all parts 
of a model adequately.  Such areas are essentially “out of 
focus”, and given the lack of information, they must also 
be treated as immutable components.  Security constraints 
may further prevent certain monitoring, even if the probes 
to do so exist.  Thus, lack of focus may be involuntary. 

In the next year, we will be developing a theory of 
focus and mechanisms to change focus.  In particular, we 
need to be able to describe what is and is not known; lack 
of information about an event could mean that the event 
did not occur or that it was not in focus at the time it did 
occur and hence was not seen. We also need a way to 
represent focus in the event schema and in gauge outputs.  
Finally, we need to extend the probe management 
infrastructure to allow probes to report their focus (if 
possible) and to change the focus by inserting/removing 
probes, activating/deactivating them, and ordering them to 
collect different kinds of information.  This in turn will 
require a better means of describing probe capabilities 
architecturally. 

Model unification.  Finally, we want to integrate 
dynamically collected information with static information 
and represent the combination in a single evolving model 
of an application’s deployment and behavior.  We 
anticipate using xArch [3] for this purpose. In xArch, a 
distinction is made between the model of a family of 
systems and a specific instantiation of a member of that 
family.  Not only would this provide a convenient 
modeling and display framework, but would enable a 
number of existing architectural analysis tools to be 
applied to dynamically gathered and modeled information. 
Both probe placement and event subscription assume 
knowledge of the general structure of the application and 
the kinds of events that a probe is capable of monitoring.  
Both appear to be amenable to simplification through the 
use of architectural models of the application (should such 
models exist).  As noted above, two levels of architectural 
models can provide information about the structure and 
behavior of a family of systems and of a specific 
instantiation.  It appears that there is sufficient information 
in these models to significantly ease the process of 
determining where to place probes. In the next year, we 
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plan to build a prototype tool to use ADL models to drive 
probe placement. Because this tool will then know where 
probes have been placed to carry out a particular 
monitoring activity, it can also inform the recipient gauges 
information about events to which they should subscribe. 
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 (A-2)  Measures of Success, OBJS Report, October 2000  
An early version of success criteria for the project as a PowerPoint presentation. 
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Software Surveyor Measures of Success 
David Wells 

Object Services (OBJS) 
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing 

the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government 

Kinds of Success 

• Software Quality 
• Probe & Gauge Coverage 
• Gauge Precision 
• Analysis Capability 
• Task-Specific Evaluation 
• Scenario-Based Evaluation

Software Surveyor probes, gauges, and infrastructure tools can 
be evaluated at several (increasingly meaningful) levels: 

Software Quality 

• Supporting software will be externally used by Columbia, WPI, BBN, and 
USC/ISI. 

• Gauges will be demonstrated in the context of the GeoWorlds demo in May 2001.
• Gauges will be applied to typical bugs reported on the GeoWorlds Bug Reporting 

List. 

The quality of Software Surveyor probes, gauges, and ancillary 
tools can be evaluated through use by outside groups: 
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Probe & Gauge Coverage 

• How completely and accurately can the gauges map an application’s 
changing configuration? 

– a function of the ability to place probes at component boundaries (which is in turn 
dependent on the ability to probe in various technologies, collect the required 
information at these points, and deal with security restrictions that might detailed 
preclude reporting).  

– in Y1, we will only capture information within the Java runtime; additional probing 
of DDLs and CORBA will be done in future years. 

• Given that a complete configuration graph may be impossible to construct, 
how well can the gauges identify and address uncertainty in the graph? 

• Is the level of completeness and accuracy that can be achieved for a 
configuration graph useful to an administrator or user? 

Probes and gauges can be evaluated by how well they perform 
their intended task. 

Gauge Precision 

• Between components within processes (fine grain - narrow scope) & between 
processes (coarse grain - wider scope). 

• The process by which the connection was made 
– identity of the entity(s) that created the connection (linker, HTTP, CORBA ORB, Trader, 

manual, ...) 
– arguments used in creating the connection 
– source for the arguments (function call, file, …) 
– how were “open point” arguments resolved? (i.e., to what values) 
– is the connection static or dynamic? 
– when was the connection made & modified? 

•  Whether & how the connection has been used. 

The amount of detail that a gauge can provide is an important 
measure of the potential usefulness of the gauge, since w/o 
knowing how and why a configuration choice was made, it is 
difficult to determine if the choice is desirable or how to fix it. 
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Analysis Capability 

• Is it possible to match graphs so that corresponding components fill the same 
roles in both graphs?  I.e., can matching be done preserving component roles as 
well as graph topology? 

• Is the matching accurate? 
• Can matching be performed when portions of graphs are unknown? 
• How fast is the matching as a function of graph size?  Is it fast enough to be 

useful? 

Software Surveyor will provide analysis tools to compare 
configuration graphs and to match reified configurations to 
design specifications. 

Task-Specific Evaluation 

• Improved diagnostic & debugging for multi-technology distributed software.   
Goal = 75% reduction in time to identify configurations and activity patterns. 

• Increased ability to evolve distributed software. 
Goal = provide 75% of detailed configuration & usage status info needed by 
evolution planners. 

• Low development & runtime overhead. 
Goal = automatic or GUI-enabled insertion & 1% runtime penalty 

• Reduced component footprint 
Goal = 10-90% reduction in size of component footprints by identifying unused 
libraries or portions thereof (applicable only when such excess footprint exists) 

Software Surveyor gauges can be evaluated based on how the 
information they provide facilitates certain specific software 
maintenance and debugging tasks: 
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Scenario-Based Evaluation 

• How efficiently GeoWorlds can be installed in different environments and its 
services deployed. 

• How easily complex information management tasks can be scripted with assured 
semantic and syntactic interoperability. 

• How reliably the scripts can be executed while maintaining desired quality. 
• How dynamically the scripts can be evolved based on resource availability and 

requirement changes. 
• How efficiently new services can be added to GeoWorlds while maintaining 

compatibility 

Software Surveyor success will be measured by how well it, in 
combination with other DASADA gauges, can improve the 
lifecycle behavior of a complex, distributed application. The 
GeoWorlds intelligence-analysis application is already in use at 
PACOM and improvements to its lifecycle behavior can be 
measured against historical data. Specifically: 
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B. Technical Reports 
(B-1)  Survey of Existing Instrumentation Tools, Paul Pazandak, OBJS 
Report, October 2000 
A review of Java tools for monitoring applications and their environment as a starting 
point for new probe technology development.   
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Instrumentation / Profiling Software 
Paul Pazandak  

Object Services & Consulting, Inc. 

Given the need within the DASADA project for software-based instrumentation tools that 
we can use to insert (Java-based) probes, I performed a reasonable scan on the internet 
for available systems. Using this list I derived a classification system (hence it could 
evolve) to help describe the available systems. We make this available for informational 
purposes and for anyone interested in (java-based) instrumentation and profiling 
software.  If anyone wants to contribute, please forward references/reviews of the given 
systems (tools written in other languages welcome). [Disclaimer: As probe tools are 
secondary to our contract the reviews are not intended to be comprehensive in nature.]  

Classification Scheme 
I have divided the tools into the following categories and sub-categories:  

• Environmental - (or application-external) these tools instrument an application 
without any application-specific code alteration through indirect means. 

o OS / JVM level - a special case whereby the underlying OS is 
instrumented 

o External Application (Non-OS) level  - these tools provide application-
external means to probe the application, such as instrumenting the 
communication path by use of a web proxy 

• Application-Internal - Tools which enable one to instrument the application 
directly. 

o Source Code level - Tool supports instrumenting of the source code 
o Bytecode level - Tool supports instrumenting of the byte code / binaries. 

In general, these tools do not supply probes, rather they provide the ability 
to instrument given that they enable one to edit bytecode. 

o Canned/closed systems -  The differentiation here is that these vendors 
provide a canned tool to instrument. That is, a constrained ability to 
instrument applications with their probing code, not yours. These tools 
come with visualization tools tool. 

other categories??  
[Some systems fit into multiple categories.]  

 

Java-based Systems/Tools 
Environmental  

External Application  
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• NetCool - Micromuse - COTS - Large suite of software monitors 
and testing tools. 

• RMON - AdventNet - COTS - Network Monitoring 

JVM  

• Jinsight - IBM AlphaWorks - ROTS - instrumented JVM 
• eTective - AverStar - COTS - instrumented JVM. Apparent 

ability to target specific components & points of interest. Support 
for Visibroker CORBA, COM based applications, and some web 
servers. 

Application-Internal  

    Source Code  

• JavaScopeNASun Microsystems  - Discontinued/Unavailable  -- Provided tool to 
instrument application and browser to view resulting data. Appears that it would 
instrument everything, no control over instrumentation techniques, location, or 
ability to add probes. 

    Bytecode (ROTS unless otherwise noted) Each provides at least a basic ability to 
modify java bytecode.  

• The JavaClass framework (version 3.3.3) - FU Berlin 
• JOIE: The Java Object Instrumentation EnvironmentNA- Duke.edu 
• BIT: Bytecode Instrumenting ToolNA - Colorado.edu 
• Binary Component Adaptation for JavaNA- UCSB.edu - 
• JTrek - (COTS) Compaq 
• CFParse - IBM AlphaWorks 
• Jikes Bytecode Toolkit - IBM AlphaWorks  - I found this to be the most full-

featured (albeit largest as well) bytecode editor 

     Canned Commercial Tools  

• JProbe Java Performance Tools KL Group Inc. -  A suite of performance 
analysis tools. 

• NuMega DevPartner® Java™ Edition Compuware  - Canned application for 
application profiling. Doesn't appear to support user-defined probes or probe 
placement 

• OptimizeIt! 
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C++ 

Environmental : Application-Internal  

    Source Code :   Bytecode  

• EEL: An Executable Editing Library - Wisc.edu - Solaris-based 
• etch - Washington.edu x86 source code 
• Instrumented Connectors - Teknowledge - WinNT. Supports modification to the 

in-memory version of the program (no modification of the binaries on disk). 

NA - Does not appear to be an active project / tool   

 
 
The views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the official policies, either expressed or implied, 
of the Defense Advanced Research Projects Agency or the U.S. Government  
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(B-2) Probe Architecture & Functionality, Paul Pazandak, OBJS, 
December 2000.  
A categorization of probe capabilities, architectural forms, and implementation options. 
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Probe Architecture & Functionality 
Paul Pazandak, Object Services & Consulting, Inc. 

 

While probes are not the focus of the DASADA contract, they are the unseen enablers. 
And while we need not glorify them, we need to respect them, to worship them, and to 
understand the role they play -- without them gauges are just news reporters 
without news. While there are no really interesting research issues to solve here -- the 
probes require yet another intermediary infrastructure -- the important goal becomes 
interoperability. To begin with, then, we need a shared understanding of what a probe can 
be, its functionality, and its operating environment. The purpose of this exercise is simply 
to elaborate on the variables so that those interested can think about the functional and 
architectural design choices, as well as to seed a discussion so we don't have to deal with 
massive code changes (or at least reduce the changes necessary) at integration time.  

While not mandated, it is assumed because of the significant benefits (and some mention 
of it), that a probe management infrastructure will be used. While this may dictate at least 
a few of the design decisions (e.g. such as the notion/use of probe stubs), several 
decisions remain -- such as the division of responsibility between the management 
infrastructure and the probes. Other decisions are more probe-centric, relating to control 
of output generation, probe placement, and invocation.  
[Note that at a given level in the tree if alternative choices are listed they appear with bullets, if the level 
lists subcategories then no bullets are used.]  

• Probe Type - Two probe related types: probe stubs and probes. 

Self-contained Probe - The probe is inserted directly, and multiple probes 
at one insertion point require each to be inserted independently of each 
other (one after another). 

Insertion - When is the probe installed  

 Static (e.g. compile time / load time) 
 Dynamic - If tools permit. It is possible to support dynamic 

probe insertion and removal, though the degree to which 
this is possible is constrained & dependent upon the 
programming language. In Java, if the class being modified 
has no current instances or has not been loaded yet, then 
runtime modification is straightforward. If class instances 
exist then more complex memory-based tweaking 
techniques will be required (e.g. as used by interactive 
debuggers like Visual Cafe). Dynamic insertion and control 
are simplified greatly by the use of probe stubs. 
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Execution - Execution order is determined by relative placement 
of probes in the flow of control 

Probe Stub - One or more self-contained probes plug in to a probe stub. 
This facilitates runtime probe insertion and removal. Only the probe stubs 
need to be inserted into the application code. At runtime, one or more 
probes can be associated with a given stub using a registration API. When 
the stub is invoked, it in turn invokes each of the registered probes. This 
approach also enables a potential flow of data between a set of registered 
probes. Issues regarding data flow between probes and data flow between 
gauges are addressed in the Other Issues section. How the stub 
determines what data (e.g. parameters, local/global state) to pass to each 
probe, and how it passes the data must also be addressed. 

Management - some process needs to manage the list of 0+ active 
(and inactive) probes associated with a stub  

 Local Management - Stub is aware of and manages the list 
of probes that are registered with it (the stub has a 
management API which supports probe registration). When 
invoked, it locally manages the execution of the registered 
probes. 

 Management Facility - The stub calls out to another 
facility when invoked and that facility in turn controls the 
execution of probes registered with that stub 

Execution (if 2+ probes) - When more than one probe is 
registered with any given stub, execution order and data passing 
must be addressed (different execution orders may produce 
different results).  

 Independent / Parallel - the registered stubs are executed 
in parallel/independently (this would appear to be 
acceptable as long as the probes do not modify 
application/environmental data) 

 Dependent / Series - the registered stubs are executed in 
some defined order (esp. necessary if the probes modify 
application/environmental data) 

Stub Insertion - When is the probe stub installed  

 Static (e.g. compile time / load time) 
 Dynamic - if tools permit 

Probe Insertion - The stub facilities runtime insertion and 
removal. 
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• Probe Existence 

Lookup - How do probe data consumers locate the probes they are 
interested in?  

 Static Binding  - Gauges and other consumers simply assume that 
the probes they are interested in exist and are running 

 Dynamic Binding - Consumers need to lookup and potentially 
cause the activation of the probes. Runtime binding is required. 

Advertisements - It is possible that probes advertise themselves, e.g. in a 
lookup service. This assumes that one can describe in an accurate way the 
probe, what it is monitoring, and it's capabilities. It also requires a facility 
for ads.  

 Offline - Advertise for use & insertion 
 Runtime - Advertise that they are running and available 

• Probe Security Issues - Can anything register to get data from a probe? What if 
the data is classified or needs to be protected? 

• Probe Behavior - Probes may be designed for several different types of tasks. 

Data Examiners - The range of data that the probe monitors. The events it 
generates may change based upon the data content.  

 None - The probe simply executes & does not inspect any data 
(e.g. used to report that a method has been called) 

 Parameters - The probe inspects parameters passed into the local 
state (method) 

 State - The probe inspects the global state of the application 
 Environment / External - The probe inspects environmental or 

other application external data 
 Runtime configurable - What the probe inspects may be altered at 

runtime (controlled either directly via the probe or via a 
management facility) 

Data Passers - The probe may pass data available to it out to its 
consumers. The format of the data passed is a separate, but related, issue.  

 Parameter - The probe passes out some subset of the parameters 
passed in to the local method in which it is installed 

 State - The probe passes out some subset of the (global) state 
available to it 

 Environment / External - The probe passes out some subset of 
the environment 
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 Runtime configurable - What is passed out by the probe is 
runtime configurable 

Data Manipulators - The probe or possibly its consumers which it has 
sent the data to alter some subset of the data (the types listed above). The 
probe needs to ensure that changes are propagated correctly  

 Runtime configurable - What is modified is runtime configurable 
• Probe Management - Overall control of the probe, e.g. controlling whether it is 

active or inactive. 

Self-managing - Regulating the probe requires direct interaction with it 
for all management features (via a probe management API) 

Centrally-managed - Regulating a probe requires interaction with a 
management facility. 

 Pull (polling) - The probe polls the facility for control information 
 Push - the facility updates the probe via the probe's management 

API 

Divided - Management is divided between the probe and a management 
facility (non-overlapping) 

• Probe Execution / Placement 

Execution -  

 Control Flow - Probe is inserted into program code & naturally 
executed based upon the flow of control of the application. The 
probe will have access to local state, method and class state, and 
any global state. 

 On Demand - Probe is not in any flow of control, and is executed 
only on demand (when invoked). Exact placement will determine 
the application state that these probes have access to (e.g. class and 
global state). 

 Event Driven - Probe, like a gauge, registers for events and is 
invoked when those events arise. Exact placement will determine 
the application state that these probes have access to (e.g. class and 
global state). 

Placement (Specification) - How is probe (stub) placement specified? 

 Descriptive Language - Some means to accurately describe this 
information should be used (e.g. such as a probe placement 
specification language, or extended ADL). 
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 Manually - An alternative is to simply manually place them, but 
this is a more limiting solution since they will need to be manually 
placed in each successive version of the instrumented application. 

• Probe State - A probe may have a persistent state it wants to maintain 

Stored/Managed Locally (by Probe) - The probe manages this state 

Managed Externally - Another facility maintains the state for the probe 

• Probe Output 

Data - The probe generates data / events reporting information it has been 
programmed to generate. Options include who the information is sent to, 
who sends it, how it is sent, when it is sent is, and in what format.  

Listeners / Registrants - The list of recipients for broadcasts from 
a probe  

 Management Facility - A management facility manages 
the list of registered listeners 

 Probe-managed - The probes manages the list 

Delivery - Who delivers the data to the consumers  

 Management Facility - The probe sends the output to a 
management facility which then sends it to all registered 
consumers 

 Probe-managed - The probe manages which consumers 
receive data (and possibly their scopes of interest) 

Transmission - If probes send events synchronously to their 
consumers it can affect performance, and even stall an application 
if the consumers are not available. Of course, this may not always 
be possible -- e.g..if it is a probe stub sending data to a probe 
which modifies the data, then it must be sent synchronously so the 
data can be updated before application execution continues.  

 synchronous 
 asynchronous 

Timing - Controlling when the probes output the data they have generated  

 Autonomous (every time they are invoked) 
 Controlled (e.g. off/on) - We can control data output by activating 

or inactivating the probe 
 On/Off State Stored locally - The probe locally stores its 

activation state 
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 Calls out to management facility - Before any execution 
the probe checks another facility for its activation state 

 On state-change only - The probe only reports differences 
(requires that it has access to historical data, whether locally or 
remotely maintained) 

 Constraint-based - Output is determined based upon constraints, 
either internally or externally dictated. 

 Internal 
 External - e.g. a management facility 
 Runtime Configurable - the constraints can be altered at 

runtime by consumers, the probe itself or some other object 
 Pollable (pull) - The output is retrieved via polling of the probe 

(suitable when the probe is not otherwise executed by natural flow 
of control) 

Format - The format of the data output by the probe  

 Static - Preset 
 Adjustable (e.g. based upon specific event or consumer) 
 Externally formatted - output to another consumer which then 

formats the data as required for its intended recipients (essentially 
this is the same as static) 

APIs - Given the functionality mentioned above it is certain that both the 
probes/probe stubs and the management infrastructure will have APIs for 
configuration/control. Both programmatic and GUI-based interfaces could exist, 
enabling code-based and direct user-based control of these objects. 

Other issues 

• Probe Event/Data Correlation - How does one relate events generated by 
different probes as belonging to the same unit of work / user / etc? This is more 
complex when the system is multi-user and/or multi-threaded. 

• Homeless Probes -  Not all probes may have an instrumented home -- a foreign 
application into which they are embedded. For example, environmental probes 
which provide information which is needed before an application is started (e.g. 
"Is the car on a drivable surface? Does the car have safe tires installed? Is there 
a bomb attached to the car?").  In such situations the probes may exist in 
specialized applications built just for them. 

• Namespace / Probe placement specification language - To register presupposes 
that gauges know how to describe the probes whose events they are interested in, 
and how to request that specific probes be installed & activated. 

• Probes vs. Gauges - What is the difference between a probe (if stubs are used) 
and a gauge? Gauges register for and consume XML-ized events from probes. Do 
probes and probe stubs communicate with other probes using XML-ized events, 
or higher level Java object representations? Some different perspectives: 
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o Efficiency - Of course, if probes have to parse XML it will be slower than 
passing java objects, especially if all probes/stubs are in the same local 
process. 

o Pass by reference - If a probe needs to modify data, then pass by value 
(e.g. XML events) complicates things a bit. 

If probes never modify data, we could potentially view probe stubs as probes, and 
then view probes as gauges.  

 
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the 
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government    
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(B-3)  ProbeMeister: Distributed Runtime Software Instrumentation, 
Paul Pazandak and David Wells, 1st Int'l Workshop on Unanticipated 
Software Evolution (USE), Spain, June 2002 
Abstract: Dynamically deployable software probes facilitate ad hoc runtime application 
monitoring and troubleshooting. Using the latest features of Sun Microsystems' JDK 1.4, 
we have built a prototype system called ProbeMeister that can attach to multiple remotely 
running applications, and effortlessly insert software probes to gather information about 
their execution. This information can be used to effect changes within the running 
applications to recover from unanticipated failures, or to improve their operation. While 
ProbeMeister is useful during software development and testing, its advantages are better 
realized after the software is up and running at the users' sites. 



Presented at the 1st Int'l Workshop on Unanticipated Software Evolution (USE) 2002, Spain, June 2002. 

43 

ProbeMeister 
Distributed Runtime Software 

Instrumentation 
Paul Pazandak and David Wells*  

{pazandak , wells@objs.com} 

Object Services & Consulting, Inc. Baltimore, MD 

Abstract 
Dynamically deployable software probes facilitate ad 
hoc runtime application monitoring and 
troubleshooting. Using the latest features of Sun 
Microsystems' JDK 1.4, we have built a prototype 
system called ProbeMeister that can attach to multiple 
remotely running applications, and effortlessly insert 
software probes to gather information about their 
execution. This information can be used to effect 
changes within the running applications to recover 
from unanticipated failures, or to improve their 
operation. While ProbeMeister is useful during 
software development and testing, its advantages are 
better realized after the software is up and running at 
the users' sites.  

1  Introduction 
Software probes enable the monitoring 
of running applications.  Current probe 
tools are primarily designed for software 
testing:  developers insert probes into 
their code or underlying OS during 
testing to emit data to help locate 
bottlenecks, memory leaks, bugs, or to 
visualize code coverage, etc.  Probes of 
this kind may also be left in an end-user 
version of an application for bug 
reporting: if users encounter problems at 
a later date, the log files generated by the 
probes can be sent back to the software 
vendor for analysis. Both types of uses 
require skilled programmers to place and 
compile probes into the application and 

                                                 
* This research is sponsored by Defense Advanced Research 
Projects Agency and administered by the US Air Force 
Research Laboratory under contract F30602-00-C-0206.  The 
views and conclusions contained in this document are those 
of the authors and should not be interpreted as representing 
the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. 
Government 

to determine the corrective actions to be 
taken once the probe data has been 
gathered and analyzed. Required 
changes are made and the software is 
recompiled again. 

Our goal in developing our own 
instrumentation tool was to produce a 
technology suitable for distributed 
reconfigurable component-based 
software - potentially widely-distributed 
applications whose components are 
loaded on demand.  Such systems are 
difficult to extensively test prior to 
deployment, partially because their 
environment is often immense (think 
Internet scale) and constantly changing.  
Moreover, the components may be 
developed by separate companies and 
typically evolve independently of each 
other, increasing the probability that 
problems will arise. 

To probe these kinds of systems, our 
tool would need to be able to connect to 
running applications and deploy probes 
to each of the distributed components, 
then gather up all probe output for 
runtime tool-based analyses.  In 
conjunction with other tools, required 
changes would be made without 
recompiling or restarting the 
application1. 

 Using the latest features of Java JDK 
1.4, we have built ProbeMeister, our 
second-generation instrumentation tool 
capable of deploying probes into 
remotely running Java software. 
ProbeMeister instruments Java bytecode, 
and works without needing to copy 
supporting code libraries to the remote 
machines. Probes can be deployed and 
removed at will into any running Java 
application, remote or local. 

                                                 
1 Imagine needing to modify, recompile, and restart a vital 
army tank subsystem during battle. 
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ProbeMeister is being developed as part 
of the Software Surveyor project [x] 
within the larger DARPA DASADA 
program [xi], the goal of which is to 
develop technology to model, monitor, 
and manage dynamically composed and 
evolving systems. 

2 Overview of ProbeMeister 
ProbeMeister facilitates the 
instrumentation of a distributed running 
application with software probes2. It 
accomplishes this in part by 
manipulating the in-memory 
representation of the running 
application. A key capability of 
ProbeMeister is that its extensible set of 
software probes can be inserted or 
removed at any point while the 
application is running. A second key 
capability is that it supports the 
instrumentation of multiple remotely 
running applications. Both are necessary 
for monitoring evolving, distributed 
applications; since the application’s 
connectivity and components may 
change during execution, it is essential 
to be able to insert and manage probes in 
multiple remote components 
simultaneously. 

 Prior to developing ProbeMeister, 
we developed the Java Bytecode 
Instrumentor (JBCI). JBCI is a static 
bytecode instumentor. It requires a 
multi-step process of loading a class off-
line into JBCI, deploying and 
customizing the selected probe(s), 
saving the modified class, and then 
restarting the application. Removing a 
probe requires similar steps. What we 
found was that once we knew exactly 
where we wanted to deploy all of the 

                                                 
2 ProbeMeister also supports the dynamic creation of new 
classes and complete redefinition of existing classes. 

probes, the process was relatively quick. 
However, we also found that probe 
placement is an intensely iterative 
process unless perhaps the user is also 
the developer.  For the overall project 
that we are involved in it is understood 
that a ProbeMeister user is not always 
the developer, but perhaps only a skilled 
application user having solid but general 
knowledge about how the application 
works [xii]. When the application is not 
performing as expected, either as 
determined by the user or by pre-
deployed (possibly even statically 
deployed) monitoring probes, task-
specific probes could be deployed to 
gather more information to determine if 
a given component is not working as 
expected. A corrective response could be 
to modify specific parameters in the 
code to tweak its behavior, or to replace 
the component with a more reliable or 
more available one. 

 As software developers, we felt that 
the probe deployment cycle was a 
hindrance to ad hoc exploratory probing.  
This was the prime motivation for 
replacing JBCI with the much more dy-
namic ProbeMeister. In moving from 
JBCI to ProbeMeister, we immediately 
enjoyed the benefits of dynamic 
distributed probe deployment. Not only 
did it practically eliminate the 
deployment cycle, but also the results 
generated by the probes could be seen 
immediately without having to restart 
the application.  

 Supporting easy probe placement by 
non-developers requires additional tools 
and interfaces having knowledge of the 
application's architectural model, that 
can suggest probe deployment locations 
(or automatically deploy probes) based 
upon the problems the user (or the 
analysis tool) wants to troubleshoot. 
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Model-based probe deployment is the 
focus of another aspect of  the Software 
Surveyor project, and will be the topic of 
a future paper. 

 Finally, ProbeMeister has not been 
designed to compete with coverage-
oriented optimization tools. These tools 
are certainly more efficient at this since 
they can statically instrument an entire 
application with perhaps hundreds or 
thousands of probes to collect 
performance data. ProbeMeister is 
geared toward targeted placement of 
probes to inspect (and possibly effect 
changes upon) a running distributed 
application. However, the new interfaces 
in JDK 1.4 now makes it unnecessary to 
deploy any probes into a remote 
application to provide coverage 
feedback. We just haven't focused on 
exposing this capability in ProbeMeister 
yet. 

2.1  Related Work 
Prior to developing JBCI (about two 
years ago) we performed a reasonable 
search and tool review of several Java 
(and C++) bytecode related packages 
(see Related Works in section 8 for the 
links to the mentioned Java tools). We 
were looking for an extensible tool that 
would allow us to write our own 
bytecode probes and deploy them. While 
we could have looked at source code 
probe deployment tools, we didn't want 
to limit probe deployment to 
applications in which we had source 
code access, nor did we want the 
overhead associated with adding a 
recompiling step to the deployment 
cycle. We found that some of the 
available instrumentor tools appeared to 
be closed, and didn't allow one to write 
their own probes. These tools were 
geared toward software profiling (e.g. 

JProbe, NuMega, OptimizeIt!). Some 
other tools were close to what we were 
looking for but were not extensible, no 
longer supported, or too costly (e.g. 
JOIE, Jtrek, JFParse).  Yet another group 
approached instrumentation by 
providing modified or pre-instrumented 
JVMs (e.g. Jinsight, eTective, BCA). 
Finally, the last tools (e.g. BIT, Jikes, 
and BCEL) were simply bytecode 
editors. For our needs, we thought it 
would be more efficient to prototype our 
own tool using one of these editors. Jikes 
is the editor we integrated into JBCI. 

 Even though JBCI worked 
reasonably well as a standalone tool, it 
could not be used (in the next stage of 
the DASADA program) by other tools at 
runtime to deploy probes since it only 
supported static instrumentation. This 
was an obvious and significant drawback 
to using JBCI. Thanks to several people 
at Sun Microsystems, we were fortunate 
to get access to an early version of JDK 
1.4 in which the Java debug interface 
(JDI) had been extended to support 
remote runtime bytecode modification 
[xiii]. Using JDK 1.4, we began a 
complete re-implementation of our tool 
(about one year ago), now called 
ProbeMeister.  

 We should mention that we did find 
some similar tools once we began 
implementing ProbeMeister. For 
example, we found an interesting 
product called RootCause, which offered 
a sort of "one-time" dynamic probe 
deployment by instrumenting a class as 
it is loaded into the JVM. Other similar 
products like this exist in the C++ world, 
such as NTWrappers, that can modify a 
DLL just prior to it being loaded by the 
OS. Of course, none of these offered the 
kind of flexibility we desired. 
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3  ProbeMeister Architecture 
In this section we present a high level 
view of the ProbeMeister architecture. In 
the lowest layer, ProbeMeister has a 
Virtual Machine (VM) Manager that 
accepts or initiates connections with 
other JVMs via the JDK's JDI interface. 
Connection behavior is enabled and 
configured by the targeted application 
through command-line arguments to the 
Java interpreter -- the application may 
initiate the remote connection (as a 
client) to ProbeMeister (running in a 
separate JVM), or it may begin its 
execution and allow ProbeMeister to 
initiate the connection (acting as a 
server) at some later time. In either case 
the targeted application requires no 
additional code as the underlying JDI 
extensions manage the connection to 
ProbeMeister. Using the JDI interface, 
an application like ProbeMeister can set 
breakpoints, subscribe to events (e.g., 
class loading, method entry and exit, 
etc), modify methods, and even create 
new classes ones on the fly. 

 If the application initiates the 
connection to ProbeMeister, the 
connection is established before the core 
JDK classes have been loaded, and 
therefore also before its main() method 
is invoked. This enables probes to be 
deployed before any of the application 
code has been invoked. It therefore 
allows the probes to capture the 
application's entire behavior from the 
beginning.  When the connection to the 
application is opened, ProbeMeister 
stops the remote JDK's execution prior 
to loading of any of the application's 
classes. This enables the user to 
instrument any of the core JDK classes 
(such as java.io.File to monitor file 
access) and therefore capture all 
application activity. The user could also 

Figure 1. ProbeMeister Deployment 
Scenario 
schedule probes to be automatically 
deployed as the application's classes are 
loaded. 

 While having each application 
connect to ProbeMeister is convenient, 
we feel that it is an unreasonable 
constraint. ProbeMeister should be able 
to be activated on-demand, as needed. 
JDI-specific Java interpreter command 
line arguments allows an application to 
accept a remote connection at any point 
during its execution. Using this 
approach, a ProbeMeister user (or 
external tool) may request a connection 
to an application by specifying its 
address and port (as defined in that 
application's command line arguments). 
After a connection is established 
ProbeMeister may be used to deploy 
probes. 

 Once an application is connected to 
ProbeMeister it is assigned a set of 
components: a Connection Manager that 
manages the communication with the 
remote application; a Probe Manager 
that controls the creation and 
deployment of probes; and, a 
Configuration Manager that provides 
control to deploy or remove several 
probes (a probe configuration) 
simultaneously.  
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 Finally, in the highest layers, 
ProbeMeister provides a user interface 
as well as programmatic interfaces so 
other tools can control it (locally or 
remotely). The following describes each 
of the connection-specific components in 
more detail. Figure 1 shows the 
architecture of ProbeMeister in a typical 
deployment scenario. 

 In the depicted scenario, 
ProbeMeister is connected to four 
remotely running Java Virtual Machines 
(JVMs) that make up a given distributed 
application. Probes that have been 
inserted, when invoked, emit descriptive 
events to the Siena Distributed Event 
Server [xiv] event bus3 for remote 
delivery to interested consumers. The 
emitted events are consumed by a 
separate external system (tools under 
development) that analyzes the events, 
generates user consumable output (status 
or warnings), and may also feedback 
into ProbeMeister by dictating further 
probe reconfiguration. Of course, 
ProbeMeister can be used for manual 
user-driven monitoring and analysis. For 
this, we have built web browser-based 
HTML and XML user displays that 
collect and categorize probe events, and 
display event details4 

3.1  Communication Manager 
When a connection is established 
between the VM Manager and a remote 
application the connection is assigned to 
a communication manager. The 
Communication Manager manages the 
connection with a distributed application 
or component via the JDK 1.4 JDI 
interface. It provides the routines for 

                                                 
3 Siena is the event bus for many projects in the DASADA 
program. 
4 Probe event content may include probe location, invocation 
time, stack traces, user-assigned values, and method 
arguments, for example. 

accessing the remote classes, modifying 
the classes, and monitoring the state of 
the JVM. All calls affecting the remote 
JVM pass through this component.  

3.2  Probe Manager 
The probe manager controls the insertion 
and removal of application probes.  
Probes may be inserted when a class is 
first loaded, before any of its methods 
are invoked, or at any point after that. 
Insertion involves loading the chosen 
class' Java bytecode from its class file, 
modifying the selected method by 
inserting the probe-specific bytecode, 
and writing out the modification to the 
remote JVM using the JDI API call: 
 VirtualMachine.redefineClasse

s().  
 

 ProbeMeister currently uses the 
Bytecode Engineering Library[xv] to 
modify Java bytecode5. To understand 
the minimum cost to deploy a probe, it 
takes on the order of 20 milliseconds to 
create a basic probe, modify the 
bytecode, and invoke 
redefineClasses()on a small locally 
running application. It took an average 
of about 250 milliseconds to deploy the 
same probe on the same application 
running in Baltimore with ProbeMeister 
running in Minneapolis6. This has been 
more than adequate to date given that we 
have created on the order of no more 
than tens of probes per remote 
application.  

 redefineClasses() takes as an 
argument the entire modified bytecode 

                                                 
5 We switched from using IBM's Jikes because of licensing 
constraints (only evaluation licenses were available), and 
because it was no longer being improved 
6 We found that it takes several minutes to define a new class 
which is a concern to us, but we have not yet studied this 
issue in detail. 
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of the class. Once invoked, it replaces 
the class definition in the remote JVM. 
However, only new invocations will 
execute the new version of a modified 
method; currently running invocations 
will run to completion using the older 
code. And while the JDI specification 
allows for considerable changes to the 
bytecode (e.g. new methods, new 
attributes, completely redefined class, 
etc), it is up to the individual JVM 
implementations. At this point, Sun's 
JVM implementation only supports 
method modification. Once 
ProbeMeister modifies a class, since the 
modifications are transient a copy of the 
modified class bytecode is retained and 
used as the basis for any further probe 
insertions or deletions. A detailed 
description of the supported probe types 
is presented in a later section.  

 While ProbeMeister's Probe 
Manager has been designed to support 
the management of heterogeneous 
(multi-language) probes, thus far we 
have focused exclusively on supporting 
dynamic (or runtime) Java bytecode 
probes. Runtime probes are inserted 
while the application is running, while 
static probes are inserted when the 
application is offline. Runtime probes 
are transient by default, and are lost once 
the application terminates; static probes 
are persistent by definition. To make 
runtime probes persistent, the in-
memory modifications need to be saved 
back to disk in Java classfile format. The 
modified classfiles can replace the 
original classfiles, or be stored 
separately (however, the configuration 
manager eliminates the need to do this, 
as described in the next section). 

 Finally, while ProbeMeister 
maintains a list of inserted probes for 
each JVM, the Probe Manager is also 

capable of automatically identifying all 
probes that have been previously 
inserted (whether statically or 
dynamically) by parsing and relatively 
quickly examining a method's bytecodes. 
This mechanism is also used to validate 
external configuration files to ensure that 
they accurately reflect the current set of 
inserted probes in a given instrumented 
version of the application. 

3.3  Configuration Manager 
While the act of placing probes is quite 
straightforward, it would become tedious 
if one had to redefine and redeploy 
probes each time ProbeMeister 
connected to the application -- for each 
remote component. For this reason we 
implemented a probe configuration 
manager. The Configuration Manager is 
responsible for tracking and recording 
all probe deployments to each 
application. The current configuration 
can be viewed and saved (to XML-based 
configuration files) at any point. Once 
saved, a configuration can again be 
viewed, and also reloaded and reapplied. 
Reapplying a configuration causes all 
probes to be reconstructed and then 
deployed to the selected application.  

 A second use of configuration files is 
to define probe sets that target specific 
activities or parts of the application (e.g.  
file access, network traffic, etc.). Using 
these sets, one could load and monitor 
the output from one probe set, then 
deapply the set (which removes 
deployed probes) and reapply another 
set. 

3.4  User Interface 
The graphical user interface (see Figure 
2) provides access to all of the features 
described above.  Virtual machines 
(applications) waiting to attach to 
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ProbeMeister are announced at the 
bottom of the display. As stated, the user 
may also initiate a connection (using the 
menus) to a remotely running virtual 
machine. Once connected, the user 
resumes the virtual machine's execution. 
Each tab in the display represents a 
different remote virtual machine running 
a separate component or application. 
This figure shows two applications that 
ProbeMeister is connected to. The first is 
a remotely running GeoWorlds[xvi] client 
application, the second is a service 
component used by the client. 
GeoWorlds is a central part of the 
software testbed within the DASADA 
project because it is a distributed 
component-based application that 
dynamically assembles itself on-demand. 

 The interface lists all of the 
application's classes that have been 
loaded (the core JDK classes have been 
filtered out using the controls at right). 
The add() method has been instrumented 
with a simple probe -- this probe outputs 
a user-provided string to the 
application's console. From the list of 
classes one can also see a class that 
ProbeMeister has dynamically deployed 
(called OBJS_Breakpointer) into the 
remotely running virtual machine. 
ProbeMeister automatically deploys this 
class into each attaching JVM to control 

breakpointing (methods belonging to 
classes in a remote JVM can only be 
invoked at breakpoints). 

 Probes are inserted by dragging a 
probe from the list of probes onto the 
desired method. Most probes require 
some configuring and present displays 
for customization. The probe icons are 
used differentiate between deployed and 
undeployed probes, and simple probes 
and probe stubs (described later).  

 The Gauge Deployment Requests list 
illustrates how external tools may 
suggest deployment locations within 
ProbeMeister. These tools may also 
automatically deploy probes without 
user intervention. This interface is only 
present when requested (and is the 
subject of a future paper on Software 
Surveyor). 

3.5  Other Interfaces 
ProbeMeister provides access to its 
functionality through local and RMI-
based programmatic interfaces. As seen 
in Figure 2 and discussed briefly above, 
Gauge Deployment Requests are sent 
over RMI to ProbeMeister. These 
external software gauges consume the 
events emitted (over the event bus) by 
deployed probes, so when gauges are 
first activated they suggest or auto-



 

50 

deploy (via deployment requests) the 
probes required to monitor the targeted 
activity. 

4  Probes 
ProbeMeister provides a Statement 
Factory to generate bytecode probe 
definitions on the fly. Probes are defined 
like recipes where the ingredients are 
Java bytecodes. Defining a probe recipe 
requires identifying the series of calls to 
be made to the Statement Factory. Each 
call adds one or more Java bytecodes. 
While several probe recipes are 
provided, others can be added to the 
library by extending the 
BytecodeProbeInterface. Probes can also 
be constructed in an ad hoc manner by 
directly calling the Statement Factory 
via the programmatic interface. 
Furthermore, the Statement Factory can 
also be extended with more functional 
bytecode building blocks. The following 
example illustrates how the simple 
PrintStringProbe class creates bytecode 
using the Statement Factory and inserts 
it into a specified method (defined in a 
bytecode location - bLoc). 

 
[a] StatementList sList= 

BytecodeMgr.createStatementList(bLo
c); 

[b]StatementFactory.createPrintlnStmt( 
sList, userStringToPrint); 

[c] SimpleProbe simpleProbe = new 
SimpleProbe (probeID, 
probeDescription, probeType, sList, 
bLoc); 

[d]BytecodeMgr.insertProbe(simpleProbe)
; 

Initially [a], a new structure 
(StatementList) is created that will hold 
(and validate) the probe-specific 
bytecode. In [b], the call to the 
Statement Factory's 
createPrintlnStmt() generates bytecode 
that outputs the specified string, and then 

inserts the custom bytecode into the 
StatementList. In [c], a new simple 
probe wrapper is created (it knows how 
to deploy simple probes). It is passed a 
unique probe ID, a probe description, a 
probeType (PrintStringProbe), the 
StatementList, and the bytecode 
location. Finally, the probe is inserted 
into the targeted method. Once this is 
done, redefineClasses() may be called 
to propagate the update to the remote 
JVM. 

 ProbeMeister defines two types of 
deployable probes: simple probes and 
probe stubs. Simple probes are self-
contained units of code. While they may 
call out to other methods owned by the 
application, they do not require any 
more probe-specific code to function. 
The current set of predefined simple 
probe recipes include a probe that 
outputs a user-defined string (discussed 
above), one that outputs the method's 
argument values, another that calls a 
specified static method, and a similar 
probe that calls a static method using 
introspection wrapped with exception 
handling.  Simple probes may output 
information to the console of the remote 
application (such as argument values), or 
modify method state, for example. But, 
without supporting code, a probe cannot 
emit events. This is one motivation for 
probe stubs. 

 As there is only so much one can do 
with a probe in a single method, we 
found a need for a probe that could be 
divided in two: we call them probe stubs 
and probe plugs. A probe stub, like a 
simple probe, may perform intra-method 
manipulations such as modifying 
argument values or outputting data to the 
console. However, a probe stub is also 
able to perform more complex tasks 
because it calls out to one of an array of 
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probe plugs. For example, two of our 
pre-defined stubs (probe recipes) include 
one that emits status information, the 
stack trace, a user-defined string, an 
event name and sub-event name; the 
other also emits the set of method 
arguments. This information can then be 
passed to a plug for further processing, 
and even return values back to the stub 
(e.g. to effect state changes). 

 Unlike probe stubs, which are 
written in Java bytecode, probe plugs 
can be written in Java. This really 
simplifies the writing of the bulk of the 
probe's functional code. A probe plug 
provides specific functionality that may 
perform any task. We currently use 
probe plugs to emit data from the probe 
stubs over the Siena event bus.  Stubs 
are matched to plugs by their method 
signatures. When a user selects a probe 
stub to install, the Probe Manager 
returns a list of all compatible probe 
plugs from the ProbePlugCatalog. The 
user then selects an appropriate plug 
based upon its functional description. 
Like simple probes and probe stubs, new 
probe plugs can be added by registering 
them in the appropriate persistent 
catalog. 

 When stubs will be used, either the 
remote virtual machine must include the 
associated probe plug classes in its 
classpath, or ProbeMeister can port the 
probe plug classes to the remote virtual 
machine on the fly. The latter of course 
is preferable, as otherwise the plug code 
will need to be copied to each remote 
computer. However, if a considerable 
number of classes need to be deployed it 
may require significant overhead7. 

                                                 
7 The Siena Distributed Event Server is composed of 54 
classes, making it more practical to copy the jar file to each 
site. However, it is likely that we could modify it to reduce 

 Finally, the Statement Factory 
validates the structure of each probe 
(only the Statement Factory can insert 
bytecode into a StatementList) and uses 
a wrapper mechanism to ensure that the 
probe can be removed once deployed. 

5  Issues 
There are a number of issues and 
limitations that are worth mentioning. 
First of all, as previously discussed, 
simple probe output is constrained to the 
remote JVM's console window because 
the probe code is executing within the 
context of the remote application. This is 
useful for certain types of debugging and 
monitoring, especially if the application 
is local. But, if the application is 
distributed, there must be a way to 
collect the probe output from each 
remote JVM. Using probe stubs and 
supporting code a probe can emit events 
external to the remote host. As 
previously mentioned, we currently 
support this capability using Siena. The 
events generated by the probes are 
published to a remote Siena event server 
and subscribed to by our user-oriented 
Siena event monitor (and other Software 
Surveyor gauge tools), which then 
displays the event data in a web browser. 
Other event publication schemes are also 
possible. For example, one could use the 
Java JDK 1.4 Logger API to emit probe 
events in the form of log messages via 
TCP streams to a remote collection 
system. 

 Another issue is probe control. 
Currently probes deployed in the remote 
application can only be disabled by 
removing them. One potential alternative 
would be to simply modify the probe 
bytecode by inserting a jump instruction 

                                                                   
the number of classes significantly, thus making it possible to 
deploy on the fly. 
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to bypass the probe code. This is slightly 
more efficient than removing the entire 
probe and reinserting it at a later time. 
Another alternative would be to port a 
new class that contains a vector of 
Boolean switches. Each probe would 
then check its own on/off value in this 
vector prior to executing. ProbeMeister 
would modify the values in this vector 
by remotely invoking a method to alter 
the on/off values.  However, (unlike 
method modification) object invocations 
using the JDI API require that the 
remote application be at a breakpoint. 
We have yet to measure the overall cost 
of this approach. Although, given that 
remote probe removal is on the order of 
250 milliseconds it has yet to become a 
major issue. 

 While using the JDI API, we've 
noticed three important constraints. First, 
to modify a method ProbeMeister needs 
a copy of the complete bytecode of the 
class because critical pieces found in a 
.class file are not defined at the method 
level.  This includes, for example, the 
bytecode boundaries in which a given 
attribute is valid, as well as the definition 
of exception handlers. Unfortunately, we 
have learned that the JVM cannot 
synthesize class definitions, so at this 
time ProbeMeister must have access to 
copies of all of the bytecode it may edit. 
Second, there is no straightforward 
method to reliably cause a breakpoint to 
occur in the remote JVM. While one can 
arbitrary set a breakpoint using the JDI 
interface, the problem is knowing where 
to set the breakpoint. We have created a 
simple mechanism that allows 
ProbeMeister to cause a breakpoint at 
anytime (using our Breakpointer class as 
described earlier), but only if the 
application attaches to ProbeMeister at 
startup (because we know where the 
application will begin execution!). We 

have not yet looked for a reliable way to 
port the Breakpointer class to the 
targeted application if ProbeMeister 
attaches to a running application. 
However, ProbeMeister needs to set 
breakpoints so it can invoke methods on 
remote objects.  

 The final constraint is that when an 
application connects to ProbeMeister 
there is no way to identify it. We have 
implemented a mechanism that will read 
special ProbeMeister-specific parameters 
that can be included in the command line 
(this requires ProbeMeister to invoke 
methods in the remote JVM to access 
these values). Preferably, such metadata 
would be made accessible via the JDI 
API prior to accepting a connection. 

 Another limitation is that our 
supplied probes cannot modify a 
method's arguments when the symbol 
table is not included in the class (a 
compile-time option can strip a class of 
its symbol table).  However, a probe 
could modify these values by cross-
referencing the original source, though 
we have not tried this. Not having the 
symbol table limits what a probe can do 
in a running application, for better or 
worse. Still, if needed, it is possible to 
access a method's local variables by 
statically instrumenting the source code. 
For example, we have instrumented the 
source code of some core JDK classes 
(e.g. java.io.File and java.net.URL) with 
special probes that provide access to 
more details than otherwise currently 
possible with our bytecode probes. 

 With respect to performance issues, 
we have noticed that while probe 
deployment is relatively quick, remotely 
deploying new classes appears quite 
costly – on the order of 100+ seconds.  
We have yet to investigate this issue to 
determine the source of the problem, but 
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we did notice significant bandwidth 
usage. 

 Like any other code writing, it is 
important to extensively test new probes 
as poorly written probes can easily cause 
catastrophic effects (the creation of the 
Statement Factory was intended to 
minimize such problems). And while the 
inclusion of exception handling in a 
probe addresses some of these concerns, 
it is still quite easy to write damaging 
code if one is not careful.  

6  Plans 
We are working to extend and enhance 
ProbeMeister. As mentioned earlier, 
probes need a distribution infrastructure 
to emit events. As the Java JDK 1.4 
Logger can send logged data to a remote 
location, this will be a lightweight 
alternative to using Siena. If the 
application is already using this 
mechanism, then we could also merge 
and remotely route application output 
and probe output together. Furthermore, 
the Logger API defines logging levels 
that we plan to extend to control which 
probes emit events. We plan to explore 
this approach to turning on and off 
probes, in addition to the current 
"deploy, remove, and redeploy" 
approach. 

 Another feature we are exploring is 
to remove the limitation requiring local 
bytecode access so that a method can be 
modified, and probe installed. This 
requires that ProbeMeister have access 
to a copy of every classfile in which a 
probe might be deployed. To alleviate 
this, we plan to deploy helper classes 
into the remote JVMs that will load and 
transmit (back to ProbeMeister) the 
classfiles to be modified.  This will also 
guarantee that the classfile used by the 

application is the same version that 
ProbeMeister is modifying. 

 Currently, ProbeMeister is limited to 
blind instrumentation. That is, it does not 
display the source code, or allow the 
user to specify probe location as a source 
code line offset. We plan to extend our 
user interface to support the ability to 
specify the location of a probe similar to 
how breakpoints are placed within a 
debugger interface. 

 Finally, we plan to define some 
default probe configurations for 
addressing common monitoring needs, 
such as network activity, binding 
failures, and file access. This would 
allow a user to quickly isolate certain 
types of problems, after which they 
could manually deploy probes into 
specific components given what they 
had observed. 
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8  Related Work 
This is a partial list of related Java-
specific tools. 
Bytecode Modifiers 
• JOIE: The Java Object Instrumentation 

Environment , http://www.cs.duke.edu/ari/joie/ 
• Geoff Cohen (Duke/IBM), Jeff Chase (Duke), 

and David Kaminsky (IBM),  Automatic 
Program Transformation with JOIE in 
Proceedings of the 1998 USENIX Annual 
Technical Symposium 

• CFParse ,  
http://www.alphaworks.ibm.com/  

• BIT: Bytecode Instrumenting Tool , 
http://www.cs.colorado.edu/~hanlee/BIT/index.html  

• Jikes Bytecode Toolkit , 
http://www.alphaworks.ibm.com/tech/jikesbt 
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• Bytecode Engineering Library , 
http://jakarta.apache.org/bcel/ 

Commercial Probe Deployment Tools 
• JProbe Java Performance Tools 

http://www.klgroup.com/jprobe/ 
• JTrek , 

http://www.digital.com/java/download/jtrek/index.html 
• NuMega DevPartner® Java™ Edition , 

http://numega.com 
• RootCause -Java and C++, 

http://www.ocsystems.com  

Research Probe Deployment Tools 
• NTWrappers - C++ - 

http://www.teknowledge.com 

Pre-instrumented JVMs 
• Jinsight , 

http://www.alphaworks.ibm.com/tech/jinsight 
• eTective , 

http://www.averstar.com/products/etective.html 
• Binary Component Adaptation for Java (BCA), 

http://www.cs.ucsb.edu/oocsb/bca/index.html 
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C. Software Specification Sheets 
(C-1)  OBJS ProbeMeister 
(C-2)  OBJS Gauge Tool Set 
(C-3)  OBJS EnviroProbes 
(C-4)  OBJS XML2Java
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(C-1)  OBJS ProbeMeister 

ProbeMeister  
Category(ies):  Probes/Gauges  

Institution/Company:  Object Services and Consulting, Inc. (OBJS)  

Description:  
ProbeMeister is a tool for dynamically inserting into, and subsequently 
managing, probes in running Java programs. Both GUI and API interfaces 
are provided. Features are: 

• Dynamic code insertion - The application can be 
running when the changes are made. Changes can be 
made at any point during the execution. Changes go 
away when the application terminates.  

• Simultaneous Connections - ProbeMeister can 
monitor and instrument several applications 
simultaneously.  

• Distributed Insertion - ProbeMeister can connect to 
and modify remotely running applications.  

• Configuration Management - ProbeMeister can 
record all of the modifications, which can then be 
automatically re-applied at will 

ProbeMeister represents a complete redesign of OBJS’ existing 
Java ByteCode Instrumentor (JBCI) which it replaces. 

For more information:  Paul Pazandak -  pazandak@objs.com  

Assumptions:  Java 1.4  

Status:  Research Prototype 

Availability:  DASADA researchers may obtain download access by 
contacting Paul Pazandak  

See also: www.objs.com/DASADA/ProbeMeister.htm 
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(C-2)  OBJS Gauge Tool Set 

OBJS Software Surveyor Gauge Toolset 
Category(ies): Probes/Gauges (Dynamic Analysis & Tuning, Event 

Monitoring) 

Institution/Company: Object Services & Consulting, Inc. (www.objs.com) 

Description: Gauge ToolSet: 

The current set of gauges include Coalescer, EventMonitor, 
EventMerger,StackTracer, Historian, and Mapper.  

Coalescer merges streams of separately collected eventinformation and 
renders this information on a timeline chart, performinglimited aggregation 
of events by time interval.  

EventMonitor categorizes events by type and renders HTML-and XML-
based displayable summaries with expandable detail. 
EventMonitorincludes a web server to support browser-based access. It can 
be configuredto subscribe to any subset of, or all, published events. 

EventMerger, an extension of EventMonitor, performs eventunification 
prior to rendering. Event streams may report on the same activities,but at 
differing levels from within the application. EventMerger identifiesrelated 
streams of events by analyzing event content (e.g. stack traces,event 
type/subtype, component names and other attribute values). This canhelp, 
for example, to view the overall activities of each probed componentin the 
application. 

StackTracer converts streams of application events intoa trace of program 
execution and emits an XML representation. The eventsemitted by a probe 
may be generated via several different execution pathsinvolving the probed 
method. This gauge provides insight into frequencyof invocation along 
each path. It can also be used to filter out paths(and therefore events) so 
that particular application behavior can be isolatedfor further analysis. 

Historian archives execution traces and computes statisticsof behavior.  

Mapper provides a visualization of the time-based relationshipsbetween 
events of an application. 

Formore information: Contact Us.  
Paul Pazandak 
David Wells 

Assumptions: Target application can be written in any language. Version1.0 
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requires event dissemination via Siena. The Software Surveyor 
ToolSet v1.0 is implemented in Java 1.3 and has been tested 
under Windows 2000.  

Status: Active Research Prototype 

Availability: It is currently distributed as part of the Software 
SurveyorDemo v1.0 Distribution.  

See also: http://www.objs.com/DASADA/ 
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(C-3)  OBJS EnviroProbes 

OBJS Software Surveyor EnviroProbes 
Category(ies): Probes/Gauges 

Institution/Company: Object Services & Consulting, Inc. (www.objs.com) 

Description: EnviroProbes call upon operating system utilities togather 
information on system status and resource usage. They 
monitor system-wideCPU utilization, application CPU 
utilization, and TCP bandwidth. They generateevents at 
discrete configurable intervals. 

Formore information: Contact Us.  
David Wells 
Paul Pazandak 

Assumptions: EnviroProbes is currently available only on Win2000 
andWinNT. Events generated use the Siena Event Dispatcher. 

Status: Active Research Prototype 

Availability: It is currently distributed as part of the Software 
SurveyorDemo v1.0 Distribution.  

Seealso: http://www.objs.com/DASADA/ 
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(C-4)  OBJS XML2Java 

XML2Java 
Category(ies): General Support 

Institution/Company: 

Object Services & Consulting, Inc.  

Description:  
Provides the ability to directly convert XML to first class Java 
objects (with application-specific behaviors). Potential use is 
to convert XML-based events to Java objects for application 
consumption.  
  

For more information: Contact Us. Paul Pazandak, David Wells 

Assumptions:  
Java 1.1+  
  

Status:  
Currently implemented in Lark XML Parser, but if there is 
interest we will embed it in the parser chosen for this project 
(as long as licensing permits and source code is available)  
  

Availability:  
TBD, see Status. Soon after a project parser has been chosen. 
  

See also: NA 
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D.  User Manual 

(D-1)  ProbeMeister User Manual 

ProbeMeister 2002 version 1.0/version 1.1 

Copyright 2001-2003 Object Services and Consulting, Inc. All Rights Reserved. 

See OBJS_license.txt for licensing. If file is not found, do not use this software. For licensing questions 
contact us at pazandak@objs.com or ford@objs.com.  

www.objs.com 

 

Thank you for your interest in ProbeMeister. ProbeMeister is well-documented in the sense that this 
paragraph contains a description of it, anything beyond that is a futuristic dream. ProbeMeister enables the 
insertion of new code (probes) into running distributed Java applications. It has a number of predefined 
probes that can be used. Once a probe is inserted into a method of a class, it will be executed the next time 
the method is invoked. Probes can also be removed. 

Probably the best way to understand ProbeMeister is to try it out. Run the demo below…now! A paper is 
also available on ProbeMeister on request. 

Running the demo 

A demo is included. The primary thing to note is the .bat file so you can understand how a "target VM" is 
attached to ProbeMeister. The demo is started by invoking the runSimpleExampleClient.bat. The main of 
SimpleExample2 calls printPing2(String, String, int) -- so this is the method you should instrument if you 
want to see something happen. 

Getting Started: 

1. The first thing to do is start ProbeMeister. The example will not run if 
ProbeMeister is not running. There are ways around this, but then also caveats. 
See the Help… under Virtual Machines menu to get more on this.  

2. Now, start the demo - invoke runSimpleExampleClient.bat  
3. The first thing to notice is that "Add Available VM" button is now enabled. Click 

"Add Available VM" to have ProbeMeister attach to the JVM (target VM) 
running the example.  

4. All of the initial classes of the target VM are displayed, up to but not including 
the main class. Then the target VM is halted by ProbeMeister. This break allows 
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you to instrument core Java classes before the application starts. Hit Resume 
button to load the remaining classes.  

5. At this point ProbeMeister will load the main, do some stuff including reading 
any command line identifiers so we know what application we've attached to (yes, 
this is a 'defect' of the current JDK API, but hopefully it will improve in the next 
release). Wait 5-10 seconds for this to happen.  

6. Now, you can see all of the loaded classes. Use the filtering options (e.g. 
"Exclude JDK classes") at the right in the ProbeMeister GUI to filter the list of 
displayed classes. One probe has already been installed (if all went well) in case 
you were wondering how it got there. If you see less than four classes, hit the 
filter button again, it will refresh the view. (Note: you cannot instrument inner 
classes at this time - their names include a '$').  

7. The example should have opened it's own GUI, so you should try it out & see 
what is displayed in the console before you insert any probes. 

Probe Insertion: 

1. Select the main class SimpleExample2, it should expand to display its methods.  
2. Select instrumentMe() method. Drag a method from the list on top of this method. 

The simplest of these is PrintString. As it suggests, it simply prints a user 
supplied string in the console of the target VM.  

3. Select PrintString probe. Enter a string to print in the dialog (e.g. "Got here…"). 
Hit OK. A new entry for this probe should now appear under this method in the 
list. Select the new entry to see a description of this probe.  

4. Now, to see if to worked, bring the SimpleExample2 gui and console to the front, 
then press a radio button. You should see your string printed to the console of 
SimpleExample2.  

5. To remove a probe, right-click itand select "Delete Probe" from the pop-up menu. 

  

That's it. There are two types of probes: 

• Simple probes. They are self-contained, including all the code they need to 
execute.  

• Probe Stubs & Plugs. Stubs are not self-contained. They make a call out to 
another class/method (a plug). The plug contains the body of the code to be 
executed. This is particularly useful if the code is used by several types of probes, 
or if it is so complex or long that you don't want to have to define it all in 
bytecode! While simple probes and probe stubs must be defined in bytecode, 
plugs are just normal methods in compiled java classes. 

Stubs are paired up with plugs based upon their signatures. Stubs and plugs define their 
signatures, and ProbeMeister automatically finds appropriately matching plugs, and asks 
the user to select one (there may only be one choice for some stubs). 
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Stubs and simple probes need to be registered in the ProbeCatalog.txt (located in the jar file). Probe plugs 
must be registered in ProbePlugCatalogDB.txt. You may add new plugs easily. See the example source file 
(PLUG_GeoWorldsEventsToSiena.java) in the libraries directory. It shows how one can easily write probe 
plugs (there is a lot of superfluous code -- it's quite easy to write a plug). All one must do is to create an 
entry in the catalog, and then create methods that start with "PP_" in the class. The methods must match at 
least one signature of a probe stub, otherwise it cannot be called by a stub. 

 

Probe Types 

Here's a description of the available probes.  

• PrintString - prints a user-supplied string in the target VM console  
• CallMethod - calls the specified STATIC method in the remote VM. No 

exception handling, so the method may throw an exception if an exception occurs 
in the static method called, or if an exception occurs in trying to call the method -- 
e.g. it wasn't really a static method. Use "Validate Method" in the probe dialog 
box (displayed when adding the probe) -- it'll make sure that the method exists & 
is static.  

• Stub_CallMethod - Calls a probe plug having a simple no argument list. By 
default it calls a simple plug that emits a string describing the method that called 
it.  

• PassMethodArgsStub - Like the above stub, but (should) pass the methods 
arguments to the plug to be printed. May need some work.  

• BasicEventStub - Emits an event to be consumed by the Siena Distributed Event 
Server. You need to have Siena server running. To monitor the emitted events ( 
remember they are only emitted when the probe code is invoked), run the event 
monitor which brings up a browser window. It autorefreshes about every 10 
seconds. The emitted events are categorized by event name - a name you provide. 
The stub actually calls a plug that emits the event.  

• PassMethodArgsEventStub - Like the above stub but it passes all of the 
instrumented method's arguments within the emitted event. Obviously, if an 
argument is an object it will be passed as a representation of that object.  

• PassObjectEventStub (new) - Like the above, but it passes 'this' of the current 
method. It will break if the method you instrument is a static method I would 
guess. The receiving plug, if customized to manipulate a given object type, can 
extract all sorts of information from the object. See 
PLUG_GeoWorldsEventsToSiena.java which has a plug that accepts a generic 
object, and extracts data only if it's a GeoWorlds ServiceProxy object.  

• CallMethodByName - Unlike the CallMethod probe, this probe calls by Java's 
introspection wrapped with exception handling. So, if the specified method 
doesn't exist, the called method throws an exception, or even if the invocation of 
the specified method causes an exception, the exception will be handled 
(exception information will be sent to the console of the tart VM should an 
exception occur). The benefit is that the invocation of the probe will not have any 
adverse effect on the execution of the instrumented method. 
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Other Notes 

Connections:  

To remove an application, select "Disconnect" and then "Remove". The remote application remains 
running, and any probes deployed will remain until the application terminates. If the application was started 
as a server (see the Virtual Machines help menu in ProbeMeister), then you can always reconnect at a later 
time & modify the probes that you deployed. 

Note that you can add several applications to ProbeMeister!! 

Probe Configurations: 

See the Configurations help menu in ProbeMeister. 

Remote Control ala RMl 

Everyone likes remote controls, so we added one. See the runTestRemoteRMI.bat and 
TestRemoteRMI.java files. This capability allows a remote application to deploy probes, or to suggest 
locations for a probe to be deployed via a Gauge Deployment Request. More information on request! 

 

Notes 

Send questions to me: pazandak@objs.com 

ProbeMeister outputs general messages to the console. It also outputs detailed messages & errors in XML 
in diag.pml. Send this file to me if you need help debugging a problem. 
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E.  Demonstrations & Tech Transfer 
(E-1)  IntelliGauge TIE - Using Gauges Throughout the Software 
Lifecycle to Improve Internet Information Systems, IntelliGauge 
Project Team, October 2000 

Abstract: Description of a group effort to apply a suite of DASADA technologies to 
monitoring, diagnosing, and tuning a loosely coupled Internet-based application. 

 

 

BBN Technologies  
Columbia University 

Object Services 
USC Information Sciences Institute 

University of Colorado - Boulder 
Veridian 

WPI 

IntelliGauge TIE 

Using Gauges Throughout the Software Lifecycle to 
Improve Internet Information Systems  

Year 1 Group Plan 
October 2, 2000 

Participants 
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Hypothesis 
Software gauges can: 
• Efficiently and transparently monitor distributed, real-world software to collect, analyze, 

and disseminate information to Solve configuration and usage problems at all points in 
the software life cycle 

Approach 
• Demonstrate how DASADA gauges can non-invasively instrument a complex real-

world software application (GeoWorlds) that is typical of Internet-based intelligence 
gathering, analysis, and planning systems. 

• Demonstrate how DASADA gauges can be used to diagnose and assist in the repair of 
composition and operational problems throughout the software life-cycle. 

• Demonstrate the effectiveness of the gauges by using them to diagnose real 
configuration and operational problems as reported by existing GeoWorlds users. 

Technology Sharing Plan 
There is a potential for overly tight interaction between groups, so we agreed to limit 
dependencies to: 

– Agreement on key definitions 
• events and event posets defined by a FleXML (meta-)Schema 
• probes & gauges specified in Acme 

– Common infrastructure 
• Sienna as common event distribution mechanism  
• sharing of (but not reliance on) individual probe & gauge placement tools 

– Loose (first year) coupling between different projects’ probes & gauges 
• limited first year consumption of other project’s probe & gauge 

inputs/outputs 
– Common demonstration application with individual “mini-demos” in 

scenario-based framework 



 

 
67

 

    Producer/Consumer Relationships 
TBASSCO (USC/ISI) produces 
• Semantic service and data flow description capability 

– BBN, Veridian and Object Services use them to describe semantic interoperability 
of their services 

• Service event protocol specification based on semantic service description 
– Columbia/WPI verifies services are conforming during runtime 

TBASSCO (USC/ISI) consumes 
• Semantic distance metric to measure interoperability 

– Georgia provides metrics, i.e., clustering and factor analysis 
• Runtime performance to tune architecture 

– Columbia/WPI, Object Services, BBN provide performance gauges 
• Runtime service quality to select alternative services 

– Columbia/WPI provides quality gauges, i.e., size of search result 

• Veridian/PSR Produces 
– A callable web service for creating GIS products for GeoWorlds 
– An update to the Venice application framework for dynamically (re-

)configuring this web service 
• Veridian/PSR Consumes 

– Nothing in first year 

• BBN Produces 

– “Abstract Query Engine” “applet/agent”  for demonstration with GeoWorlds 

– Website wrappability gauges 

– Runtime quality assurance content-level gauge 

– XML Binding Adapter.  Plug’n play XML technologies to dynamically update/ manipulate 
ADL XML. 

• BBN co-Produces 

– Service Contract Language 

• BBN Consumes 

– Event Language (external interface to Gauge Infrastructure) 

– GeoWorlds infrastructure 

– Other performance gauges (BBN will be producing 2). 
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• Columbia/WPI Produces 
– AIDE toolkit for inserting active interface probes into Java code. 
– FleXML toolkit - including Schema templates for defining event vocabularies, 

Oracle for publishing new vocabularies, Metaparser for validating and 
preprocessing event streams, converter to/from Siena. 

– Worklets toolkit for deploying/modifying live probes & gauges, emitting and 
coordinating dynamic reconfiguration gaugents. 

– Sample probes & gauges for monitoring GeoWorlds protocol compliance. 

• Columbia/WPI Consumes 
– ISI GeoWorlds infrastructure and protocol specs for main demo. 
– OBJS Smart Data Channels for (optional) PDA demo. 
– UColorado Siena for transporting FleXML event streams. 
– CMU xAcme activity language to ensure FleXML compliance. 
– UMass Little-JIL decentralized workflow for worklet oversight. 

• University of Colorado Produces 
– FIRM probe and gauge deployment infrastructure, which includes installation, 

activation, and deactivation 
– Siena wide-area event notification service 
– Sample probes & gauges for monitoring proper deployment of GeoWorlds 

components 

• University of Colorado Consumes 
– ISI GeoWorlds infrastructure and protocol specs for main demo 
– UCI and CMU xADL joint architecture description language 
– FleXML toolkit - including Schema templates for defining event vocabularies, 

Oracle for publishing new vocabularies, Metaparser for validating and 
preprocessing event streams, converter to/from Siena 
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• System Administrators use ConfigMapper, ConfigComparator & ConfigChecker to 
diagnose GeoWorlds installation and reconfiguration problems. 

• TBASSCO (USC/ISI) use ConfigComparator and ConfigChecker to help end user 
Intelligence Analysts to diagnose the sources of suspicious query results and identify 
inconsistencies in query construction. 

• BBN and Columbia/WPI use ConfigMapper to determine where activity monitoring and 
QoS probes should be installed. 

• The Event Infrastructure may use XML2Java to map XML-encoded events to Java-
encoded events. 

• Gauge Developers may use JBCI to place probes and stubs into applications. 

Object Services (Software Surveyor) will produce the following 
software that will be used by others: 

Software Surveyor consumes the Event Dissemination Infrastructure & 
GeoWorlds demo. 

Demo Structure 
• Illustrate gauge use in several “problem/diagnosis/response” scenarios in 4 distinct 

GeoWorlds lifecycle activities 
– Deploying/Installing GeoWorlds 
– Information Management Scripting 
– Script Execution 
– Reconfiguring GeoWorlds 

• Common demo theme across projects 
– Common storyboard across the lifecycle 
– Each scenario within a lifecycle activity shows one project’s capabilities 
– Individual scenarios will be grouped to show a combined capability 

• Equipment assumptions 
– LAN or wireless connectivity + T1 Internet access 
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  Service Selector and Job 
Listeners 

System Job Pool 

Job Manager 

Default  
Job Pool 

Service Wrapper 

Local 
Services

RMI 
Services

Socket 
Services

JavaSpace  
Job Pool 

CORBA 
Job Pool 

 
 
 

JavaSpace  
Services 

 
 
 

CORBA 
Services 

Client Layer 

Job Pool Layer 

Service Layer

Entry Flow 
Event Flow 

Asynchronous 
Service Invocation 

Architecture 

GeoWorlds Test-bed Application 

Document Analysis
Information Visualization

Information Organization

Information 
Spaces Web

Information 
Gathering 

Document 
Collection 

GeoWorlds Test-bed Application • Large component-based system in use at PACOM 
– PACOM and JFCOM are potential outside evaluators 

• Framework for adding components 
• Geographic Information Systems plus Web processing  
• Ops and intelligence uses, e.g., 

– Mapping terrorist bombings 
– Locating recurring natural disasters 
– Investigating drug trafficking and piracy in various locales  
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Functionality to be Illustrated:  
Probes & Gauges in the Software Lifecycle 

Existing Software  
(From Library of Available 

Components)  
• ISI – GeoWorlds 
• Object Services – SDC 
• BBN – Abstract search engine 
• Veridian – GIS map layers 

Design Time Aids 

 ISI 

• Gauges to select 
interoperable components 

• Gauges to determine 
difficulty of adding new 
components 

• Gauges to adapt 
architecture to computing 
environment 

Run Time Aids 

 BBN 

• Network (bandwidth, 
latency) gauges 

• Uptime gauges 

Columbia / WPI 

• Protocol gauges 
(partial matching on 
event posets) 

• Run-time gauge 
plugin and modify 

Object Services 
• Application profiling 

gauges and topology 
gauges on 
configuration, 
component usage 

• Component 
binding 

• Dead libraries 
• Versioning 
• Activity 
• Data-driven 

bindings 

ACME ADL 
XML/FleXML 

Prospective 
Software 

(Same Library: 
Alternative 
Extensions, 

Compositions) 

Requirements / Capability 
Descriptions 

 ISI: 

• Semantic function and data 
descriptions 

BBN:  

• Architecture requirement documents 

Georgia State 

• Semantic distance metrics 

Lifecycle Scenarios: 
1. Installation Time 

 

 

  Service Selector and Job 
Listeners 

System Job Pool 

Job Manager 

Default  
Job Pool 

Service Wrapper 

Local 
Services 

RMI 
Services 

Socket 
Services 

JavaSpace  
Job Pool 

CORBA 
Job Pool 

 
 
 

JavaSpace  
Services 

 
 
 

CORBA 
Services 

Client Layer 

Job Pool Layer 

Service Layer 

Entry Flow 
Event Flow 

X User Observes Causes Gauges Do How
Install script fails Expected 

component not 
found

Config gauge 
identifies missing 
component

Compare installed 
config w/ Acme 
spec

Version mismatch

Namespace error

Method invocation 
fails

Installation 
completes, but 
GeoWorlds 
doesn't work

Config gauge 
identifies use of 
different version

Compare installed 
config w/ a good 
installation

Probes
& 

Gauges
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2. Information Management 
Scripting Time 

 

Probes
& 

Gauges

? 
Intelligence 

Analyst 

User Observes Causes Gauges Do How
I/O data semantic 
mismatch 
between 
components

Semantic gauges 
identify the mismatch 
& suggest 
intermediate 
components to 
resolve it

Perform reasoning 
on I/O semantics 
and find 
components that 
make a semantic 
connection

Syntactic 
(interface) non-
compliance 
between 
components

Syntactic gauges 
determine the cause 
of non-compliance 
and suggest 
adapters

Access to library of 
converters and 
wrappers

GeoWorlds can't 
find apropriate 
data source

Semantic gauge 
subscribes data 
channels that meet 
requirement

Compare the data 
requirement and 
channel 
descriptions

Dataflow violation 
(e.g., pipe output, 
page input)

Dataflow gauge 
detects mismatch & 
suggests a dataflow 
adaptor to allow 

Access to library of 
available converters

GeoWorld script 
cannot be 
completed

3. Script Execution Time 

Probes 
& 

Gauges

User Observes Causes Gauges Do How
External data 
source has 
moved, 
disappeared, or 
become 
unresponsive

Connectivity gauge 
identifies the broken 
connection & finds 
new URL or drops 
the source

Monitoring request 
& response pairs 
and comparing 
timing with previous 
interactions

External data 
source has 
changed its (XML) 
interface

Change monitoring 
gauge determines an 
XML encoding has 
changed

Comparing the XML 
Schema used in a 
sequence of 
accesses

External service 
failure causes 
GeoWorlds script 
failure

Connectivty gauge 
identifies broken 
connection & 
suggests alternate 
service

Monitoring request 
& response pairs 
and comparing 
timing with previous 
interactions + 
knowledge of 
service alternates 
with simlilar 
interfaces

QoS gauge 
identifies growth in 
result size
Dataflow gauge 
identifies the path 
through the query 
that caused the 
increase

GeoWorlds hangs 
during script 
execution

Script returns 
suspicious results

Spam site 
introduces flood of 
dubious 
responses

QoS gauge identifies 
aberrant site & helps 
build a filter to 
eliminate spurious 
results
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4. Reconfiguration Time

 

  Service Selector and Job 
Listeners 

System Job Pool 

Job Manager 

Default  
Job Pool 

Service Wrapper 

Local 
Services 

RMI 
Services 

Socket 
Services 

JavaSpace  
Job Pool 

CORBA 
Job Pool 

 
 
 

JavaSpace  
Services 

 
 
 

CORBA 
Services 

Client Layer 

Job Pool Layer 

Service Layer 

Entry Flow 
Event Flow 

 

Probes
& 

Gauges

Brilliant 
new 

service 

User Observes Causes Gauges Do How
Attempt to install 
new remote 
service fails

Should not 
happen - 
GeoWorlds will 
accept any 
service

Users don’t know 
how difficult it is to 
add a new 
service 

Mismatch with 
GeoWorlds data 
and service 
specifications 

Conformity gauges 
measure how well do 
I/O data and 
functionality conform 
to GeoWorlds data 
and function 
specifications

Check conformity to 
document models 
and service APIs, 
and data and 
functional 
ontologies. Check if 
any wrapper can be 
applied

Installation 
Completes, but 
GeoWorlds 
doesn't work with 
new service

GIS Data 
mismatch with 
request

Semantic matching 
of components in 
reconfiguring the 
service

Venice allows the 
user to reconfigure 
the service remotely 
using an ACME 
description for the 
architecture

Group Evaluation Criteria 
• How efficiently GeoWorlds can be installed in different environments and its services 

deployed. 
• How easily complex information management tasks can be scripted with assured 

semantic and syntactic interoperability. 
• How reliably the scripts can be executed while maintaining desired quality level. 
• How dynamically the scripts can be evolved based on resource availability and 

requirement changes. 
• How efficiently can new services be added to GeoWorlds while maintaining 

compatibility. 
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Technology

Demonstration

Demo Days 
June 4-8, 2001 

10/15 12/15 2/15 4/15 

install 
Sienna 

installed 
GeoWorlds 

GeoWo
rlds 
wishlist 

strawman 
 scenarios demo 

storyboard 
detailed 
scenarios 

probes + 
insertion 
GUI 

event 
model gauges v.1 gauges v.2

completed
demo 

Year 1 Schedule 

Coordination Mechanisms 
• Source code using Source Forge technology 
• Effective network of web-based sharing of documents 

– BSCW hosted by Columbia 
• Develop Architecture for entire system showing group involvement 
• Conference calls and email 
• ICSE 2001 in Toronto 
• Winter PI Meeting 
• Face-to-face meetings 

– Individual sub-groups only 
• Working Demo by May 1st 
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Outside Interactions 
• Interaction with other DASADA groups 

– Eliminate redundancy 
– Propagate developed standards and standards in progress 
– Produce schedule for our deliverables 

Event “wire 
format” and 
dissemination 
mechanisms 

University of Colorado, Teknowledge 

ACME 
representations 
and tool kits 

Carnegie Mellon, University of California-Irvine 

Probe toolkits or 
infrastructures 

Teknowledge 

Gauge toolkits or 
infrastructures 

Multiple groups 
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(E-2) Software Surveyor: Dynamically Mapping Untamed Software 
Applications, OBJS Project Brochure, June 2001  

Abstract: Project overview and description of the status of the tools as of mid-2001.
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Terra incognita – the unknown territory that 
baffled explorers, frightened merchants and 
impeded progress.   Difficult to know where 
you are and impossible to know what to ex-
pect next.   Hic sunt dracones – here lurk 
dragons.   

The power and flexibility of modern software 
makes it increasingly a cyber incognita and 
the traditional tools of maps (design specs), 
surveying and navigational instruments, and 
marked trails (descriptions of normative 
behavior) are as inadequate in cyber 
incognita as they were in terra incognita 300 
years ago.  Design specs are incomplete, 
inaccurate, or inconsistent; software probes 
cannot observe all significant events and 

techniques to correlate independently 
recorded observations are limited; and 
descriptions of normative behavior are often 
(especially in Web-based, agent, or 
survivable systems) described as “best 
effort” with no concrete notion of what that 
means.  Further, the dynamic nature of 
many modern applications means that they 
are continually reorganizing themselves in 
response to changed user demands or 
resource availability; the equivalent of Lewis 
and Clarke having to deal with rivers and 
mountains  that changed position every few 
hours. 

So, if you have ever felt that using and 
managing complex, distributed (and often 
under-specified) dynamically reconfigurable 
software is a bit like walking alone into the 
wilderness, Software Surveyor is for you. 

OBJS’ Software Surveyor  is a profiling 
toolkit to dynamically deduce and render the 
runtime configuration and behavior of 
evolving, component-based software. Infor-

mation is synthesized from multiple sources 
and combined and rendered in a variety of 
formats and made easily accessible via the 
Web. 

 

 

Software Surveyor 
Mapping Untamed Software Applications 

Object Services and Consulting, Inc. 

Cyber Incognita 

Software Surveyor Overview 
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Software Surveyor addresses three distinct 
issues:  
• What is the application doing? 
• What is it supposed to be doing? 
• Is it doing what it is supposed to? 
This requires probes to collect a variety of 
information and an infrastructure to dissemi-
nate it, and synthesis tools to merge infor-
mation streams and make sense of it.  Re-
sults of this analysis are aggregated to iden-

tify “behavioral norms” to augment incom-
plete performance specifications. Finally, the 
probe infrastructure and behavioral norms 
can be used to signal users when the sys-
tem is operating anomalously. Software 
Surveyor requires limited prior knowledge of 
application connectivity and has the ability to 
dynamically deploy probes, allowing its use 
with dynamically reorganizing applications 
and those lacking complete specifications.    
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Probes 
AppliProbes provide information about  
events at the application interface and/or 
internal to the application.  EnviroProbes 
uses operating system utilities to gather and 
emit information on system status and re-
source use.   

The Java ByteCode Instrumentor automates 
the insertion of probes and probe stubs into 

Java ByteCode. JBCI modifies .class files by 
inserting calls to selected probes using se-
lected customizable instrumentation tech-
niques. JBCI can be extended with new 
probes and instrumentation techniques. GUI 
and programmatic interfaces will be avail-
able. Probes implemented in other lan-
guages can be called via JNI.  The next 
version of JBCI will support on-the-fly probe 
insertion into running programs. 

Event Distribution 
Events are distributed by the Siena Event 
Distribution Infrastructure (U-Colorado).  
XML2Java translates XML to first class Java 
objects with application-specific behaviors. 
Useful to convert XML-encoded events into 
a readily manipulable form.  

Analysis 
Coalescer merges streams of separately 
collected event  information to create an 
event timeline and performs limited aggre-
gation of events by time interval.  Stack-
Tracer converts streams of application 
events into a trace of program execution and 
emits an XML representation.  EventMonitor 
categorizes events by type and produces 
summaries with expandable detail.  Histo-
rian archives execution traces and computes 
statistics of behavior.  

Visualization 
Mapper provides a timeline-oriented visuali-
zation of application behavior. StackTracer 
and EventMonitor results can be viewed 
using any XML-capable Browser.  

Implementation & Status 
Software Surveyor v1.0 is implemented in 
Java 1.3 and has been tested under Win-
dows 2000.  v1.0 requires Siena for event 
distribution.  EnviroProbes is currently avail-
able only on Win2000 and WinNT. 

 

 4.4.1 Principal Investigator: David Wells 

4.4.2 Investigator: Paul Pazandak 

The views and conclusions contained in this document are those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the 
U.S. Government . 

For more information: 

www.objs.com/DASADA 

{wells, pazandak}@objs.com 

Current Tools 
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(E-3) Software Surveyor: Dynamically Mapping Untamed Software 
Applications, OBJS Project Brochure, June 2002 
Abstract: Project overview and description of the status of the tools as of mid-2002.
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Terra incognita – the unknown territory 
that baffled explorers, frightened merchants 
and impeded progress.  Difficult to know 
where you are or what to expect next.   Hic 
sunt dracones – here lurk dragons.   

The power and flexibility of modern software 
makes it increasingly a cyber incognita and the 
traditional tools of design specs, monitoring 
software, and descriptions of normative be-
havior are as inadequate in cyber incognita as 
maps, marked trails, and surveying equip-
ment they were in terra incognita 300 years 
ago.  Design specs are incomplete, inaccu-
rate, or inconsistent; software probes cannot 
observe all significant events; techniques to 

correlate independently recorded observa-
tions are limited; and descriptions of norma-
tive behavior are often (especially in Web-
based, agent, or survivable systems) de-
scribed as “best effort” with no concrete no-
tion of what that means.  Further, the dy-
namic nature of many modern applications 
means that they are continually reorganizing 
themselves in response to changed user 
demands or resource availability; equivalent 
to Lewis and Clarke having to deal with 
rivers and mountains that changed position 
every few hours. 

So, if you have ever felt that using and 
managing complex, distributed (and often 
under-specified), dynamically reconfigurable 
software is a bit like walking alone into the 
wilderness, Software Surveyor is for you. 

OBJS’ Software Surveyor  is a profiling 
toolkit to dynamically deduce and render the 
runtime configuration and behavior of 
evolving, component-based software. Infor-
mation is synthesized from multiple sources, 
combined and rendered in a variety of for-
mats, and made easily accessible via the 
Web. Software Surveyor requires limited 
prior knowledge of application connectivity 
and has the ability to dynamically deploy 
probes into distributed applications, allowing 
its use with dynamically reorganizing appli-
cations and those lacking complete specifi-
cations.                             .  

 

 

Software Surveyor 
Dynamically Mapping Untamed

Object Services and Consulting, Inc. 

Cyber Incognita 

Software Surveyor Overview 
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Probes 
Software Surveyor's core technology is 
ProbeMeister, a dynamic probe deployment 
tool. ProbeMeister manages the dynamic 
insertion of bytecode probes into multiple 

running distributed Java applications. 
ProbeMeister modifies applications at run-
time by inserting customizable bytecode 
probes into selected methods. ProbeMeister 
can be extended with new probes and 
instrumentation techniques.  

ProbeMeister provides a remote method 
interface (RMI) enabling external appli-
cations to control probe deployment. Probes 
implemented in other languages can be 
called via JNI. 

ProbeMeister also provides configuration 
management, so frequently used probe 
configurations can be saved & reused.  

Model-Driven Probe Deployment 
Controlling ProbeMeister is our model-
driven Gauge Management tool. Software 
Surveyor's Gauge Manager uses an appli-
cation's architectural specification model to 
iteratively determine where to deploy 
probes. This helps to simplify the task of 
knowing where to probe the application to 
monitor what it is doing.          .               
.

Model-Driven Monitoring

ProbeMeister
•Runtime Probe 
Deployment

Ubiquitous
Access

Distributed 
Component
Application

Models
•Application
•Gauges
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Current Tools 
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Once the Gauge Manager has deployed 
probes, Software Surveyor's Gauge Analy-
sis Tools consume and interpret the data 
emitted by the probes.  Gauges have been 
built to construct stack traces of remote ap-
plications, merge environmental and appli-
cation-specific information from multiple 
probes, and organize and archive observed 
events. 

Visualization 
Mapper provides a timeline-oriented visuali-
zation of application behavior. StackTracer 
and EventMonitor results can be viewed 
using any XML-capable Browser.   Gauges 
can be attached to applications viewed in 
the AcmeStudio architectural visualization  
tool, which can also be used to initiate 
gauge selection and deployment. 

Implementation & Status 
Software Surveyor v2.0 is implemented in 
Java 1.4 and has been tested under Win-
dows 2000.  v2.0 requires Siena for event  
distribution.  Software Surveyor is compliant 
with the evolving DASADA gauge and probe 
infrastructures.

For more information: 

www.objs.com/DASADA 

{wells, pazandak}@objs.com 

This work is funded by the Defense Advanced Research Projects Agency and monitored by the Air Force Research 
Laboratory F30602-00-C-0206. The views and conclusions contained in this document are those of the authors and should 
not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research 
Projects Agency or the U.S. Government . 

4.5.1 Principal Investigator: David Wells 

4.5.2 Investigator: Paul Pazandak 
Object Services and Consulting, Inc. 

USA 
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(E-4)  Demo Abstract, OBJS Report, June 2002 
Abstract: A short description of the 2002 Software Surveyor Demonstration applying Software Surveyor to 
the GeoWorlds intelligence gathering system described in the IntelliGauge TIE paper.OBJS Software 
Surveyor 

 

 

Demo Abstract 

June 2002 
 

Against a backdrop of the of the IntelliGauge TIE, in which a coherent collection of DASADA 
technology is used to model, tailor, monitor, analyze, and repair a geospatial situation 
understanding system (GeoWorlds) used at US Pacific Command (PACOM), OBJS will 
demonstrate: 1) use of architecture models to determine how/where to probe target applications, 
2) the ProbeMeister Probe Manager for runtime insertion and management of probes in remote 
and running Java programs, 3) use of the Siena wide area event distribution bus, 4) a collection 
of gauges to collate and interpret sensed events, some of which are architecture-model sensitive, 
and 5) event logging to support off-line analysis and for use by third-party repair tools. 
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(E-5)  White Paper – Dynamic Modeling and Analysis Tools for 
Cougaar 
 OBJS White Paper to the DARPA UltraLog Program, 2002, Mark Greaves Program 
Manager. 

Abstract: Description of how Software Surveyor could be used to monitor & debug 
distributed agent systems in the DARPA UltraLog Program.
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White Paper: Dynamic Monitoring and Analysis Tools for Cougaar 
David Wells & Paul Pazandak 

Object Services and Consulting, Inc. 

{wells, pazandak}@objs.com 

 

© Copyright 2002 Object Services and Consulting, Inc. All Rights reserved. 

 

Problem:  Both the Cougaar infrastructure and application societies built on it are so complicated and dy-
namic that it is difficult to detect or diagnose problems.  Monitoring and modeling are necessary throughout 
the lifecycle for development/debugging, deployment, health monitoring, and performance tun-
ing/improvement.   

Remote, distributed debugging is needed during development.  Many processes send messages to other 
processes, but a single debugging environment only lets you see what’s happening “here” – the process that 
is sending the message.  There is no way to know if the message was received, if the right recipient got it, 
what/if any action is being taken by the recipient or whether the recipient has died or been delayed.   

The configuration of a deployed Cougaar society (at both the application & infrastructure levels) is the 
result of a complex interaction between many different kinds of information created by one or more inde-
pendent actors (e.g., software engineers, administrators, logisticians, enemies) and representing a combina-
tion of application-level objectives, infrastructure-level actions, and outside events.  A configuration is es-
tablished by combining static specifications (e.g., available plug-ins & business rules), deployment actions 
(e.g., choice of business rules & connections to local defaults), runtime decisions (e.g., the result of a yel-
low pages lookup), and unintentional actions (e.g., attacks and failures). This interaction can be quite com-
plex as the following example shows.  Assume that an infantry company is configured to order water from 
only reasonable places.  The command structure dictates that deliveries must be made by trucks belonging 
to brigade support.  Localization rules dictate that commodities like water must be bought locally and if 
possible from a host nation provider.  Purchasing rules dictate that everything must be bought from a sup-
plier on a pre-approved list.  When the infantry company deploys, these rules are combined to determine 
the set of legitimate water suppliers and shippers.  But what if the rules are wrong or in conflict?  What if 
the brigade trucks did not deploy and are 5000 miles away?  Can a plan be made to ship local water using 
such trucks?  What if a failure causes the only allowable supplier to stop responding?  What if one of the 
suppliers on the list is captured by the enemy and is no longer acceptable?  In each of these cases, it is nec-
essary to identify the set of contacts deemed feasible in the particular deployment, update this dynamically 
as the situation evolves, present it in a way that a logistician can determine if the result makes sense, and 
track connectivity problems back to their source in the rules/defaults/trades/etc.  

Health monitoring is required input for runtime survivability action.  Foremost for ensuring robustness is 
knowing whether something has failed, if a response is delayed, if there are unexpected loads, etc.  Security 
monitoring includes detecting with whom agents/nodes are actually communicating, including side chan-
nels as well as through the approved Cougaar mechanisms.  If there is a suspicion that a component has 
been compromised, can it be monitored reliably and without letting an attacker know that it is being moni-
tored?  It is also useful to have sufficient information to allow unsuccessful executions to be compared with 
successful ones to identify differences (e.g., new plug-in, change node connectivity or usage, node failure, 
or corruption of a node) that might have caused the problem.    

Both survivability and performance tuning require information about activity patterns and available re-
sources as inputs to prioritization and resource re-allocation mechanisms.  Performance tun-
ing/improvement requires knowing what’s been happening to determine where the most bang for buck is 
available.  For instance Cougaar societies will be very sensitive to tasking fanout; if a complex task is not 
distributed to multiple nodes, insufficient computing power at a single node will be a bottleneck; on the 
other hand, if tasks have too great a fanout, communications will become a bottleneck.      
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Desirable Characteristics of a Monitoring System:   Support throughout multiple phases of the software 
lifecycle and the ability to serve many different monitoring needs under the same umbrella is clearly desir-
able.  This will require many kinds of probes to collect execution information about applications and the 
Cougaar infrastructure and resource utilization information at both the O/S and network levels.  This in-
cludes both information from within the normal Cougaar framework, but also potential side-channels by 
which rogue agents could be divulging information.   

Since applications are distributed, this information must be able to be combined remotely.  This implies a 
common event infrastructure through which detected events are collected and a common event schema 
which will allow separately collected information to be interpreted in a common form.  Events must be 
correlated to be useful.  While it is easy to order events observed in a single environment, this is of limited 
use in Cougaar where many activities span machine (and hence clocking) boundaries.  A partial ordering 
between events observed across environments (and hence subject to clock skew) can be created using addi-
tional sequencing information such as the knowledge that a message send in environment A precedes a 
message receive in environment B, thereby allowing a correlation between event streams. 

Finally, it is highly desirable to be able to add monitoring to a running application without having to restart 
it.  This allows adding new probes and also inserting probes into potentially compromised components af-
ter the suspected compromise, thus ensuring that the probes themselves have not been corrupted.  At the 
same time, it is clearly impossible to always be collecting all possibly useful information, so it must be pos-
sible to activate/deactivate monitoring based on needs and resources.  In essence, we need the ability to 
provide generic, low impact health monitoring, with the ability to turn up the intensity of monitoring when 
problems are suspected, and then once we’re sure something is not a problem, we want to be able to turn 
that monitoring off and move on to something else. 

Approach:  OBJS’ Software Surveyor is an independent software application that is capable of unobtru-
sively instrumenting and monitoring running distributed Java (and in the future C/C++) applications. The 
primary benefits of Software Surveyor include: 

• The ability to compose views of the running distributed application describing the application's be-
havior, exceptions, and state. This information is used to render a visualization of the overall ap-
plication, and as input to extensible validation mechanisms.  

• Independent distributed dynamic monitoring - a more secure, less compromisable monitoring 
technique. Also alleviates the need for a significant persistent internal infrastructure for self-
monitoring.  

• Transient instrumentation - Does not increase the footprint of the on-disk application code. When 
the application terminates, only the original code remains. 

In general, we want a family of generic monitoring tools that output in a common event schema and that 
can be accessed via a common event distribution system.  This is a big engineering problem which is well 
on its way to being solved by DASADA.  Use of generic monitoring means that the effort of building the 
probes and collection devices can be amortized.  Dynamic insertion of probes (and the ability to turn them 
off)  means that you can focus on the a suspected area or an area of interest without overburdening the sys-
tem.  If you collect everything available, you so burden the system that nothing gets accomplished.  You 
don’t want to embed probes or information-emitting code into each process because that would be un-
wieldy, wasteful and heavy-weight not to mention  requiring much co-ordination in order to make sure that 
the information from different processes are compatible and able to be correlated.  In terms of security, 
you’d like to be able to tap the line rather than bugging the phone itself.  It makes it much harder for the 
intruder to spoof you or to disable your information collecting ability as well as harder to determine if he’s 
been identified. Finally we need a family of analysis tools that will map configurations, measure resource 
utilization, correlate resources with program activity, track message flow, and detect historical patterns of 
behavior.  We would expect to use OBJS’ Software Surveyor along with some companion technology from 
the DARPA DASADA program.  Already extant and in-the-works monitoring components of Cougaar can 
be made compatible by holding them to the common event schema and making use of the common event 
distribution infrastructure. 
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Technology Base: We begin from a rather substantial technology and design base developed under the 
DARPA DASADA program and tested in a TIE monitoring a loosely-coupled, internet-based intelligence 
gathering application.  OBJS’ Software Surveyor  is a profiling toolkit to dynamically deduce and render 
the runtime configuration and behavior of evolving, component-based software.  Software Surveyor v1.0, 
July 2001, (see screenshots) includes probes to collect a variety of  information, an infrastructure to 
disseminate it, and synthesis tools to merge information streams and create dynamic configuration and us-
age maps.  Information is synthesized from multiple sources and combined and rendered in a variety of 
formats and made easily accessible via the Web.  Aggregated results identify  “behavioral norms” to aug-
ment incomplete performance specifications and can be used with the probe infrastructure to signal users 
when the system is operating anomalously. Software Surveyor requires limited prior knowledge of applica-
tion connectivity and can be used with dynamically reorganizing applications and those lacking complete 
specifications.  

The Software Surveyor core is implemented in Java and can interact with probes and gauges in other 
languages, so Software Surveyor can be applied to Cougaar.  We are currently 60% of the way through 
DASADA Phase I, so additional development will occur under this synergistic technology program.  We 
are working on the following issues for the coming year’s release. By the end of this year Software Sur-
veyor will have been completely re-implemented improving upon ideas expressed in the first version. The 
principle features of this new version include a more advanced probe management infrastructure supporting 
both simple probes and more flexible probe stubs and plugs, a framework for probe configuration manage-
ment, and framework support for both source code and bytecode probes. Finally, Software Surveyor now 
supports dynamic insertion and removal, and runtime control of probes in a running Java application (no 
other software that we're aware of is capable of doing this). 

Issues:  In concert with the core technology provided by Software Surveyor, the primary issues that need to 
be addressed include: 

• A smooth integration/correlation of dynamically and statically collected information to form a 
coherent user-comprehensible picture.  

• Context-sensitive “views”  of the monitored system to provide information at a granularity of 
value to administrators/tools and consistent with their ability to take action. (Only provide infor-
mation that can lead to an action) 

• A robust notion of “focus” to allow selective monitoring and presentation. 

A smooth integration/correlation of dynamically and statically collected information to form a coherent 
user-comprehensible picture is still needed.  An architecture description language gives a template for an 
application.  Once the application is actually instantiated and deployed, more details are filled in.  Finally, 
during run-time, probes can provide details that were missing from the static information and details about 
the functioning of the actual application.  The static model also helps determine probe placement. 

Just as database architecture recognized the need for different views of the same data for different users, we 
need to have different views of the monitored events depending on our security rights and our life-cycle 
needs – depending on whether we’re simply monitoring to identify intruders and take a pulse or whether we 
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are zeroing in on a specific problem by monitoring suspect nodes, programs, etc.  Both the fish-eye view of 
the world from where you are and the helicopter view of the world that shows overall connectivity (the “big 
picture”) are required in differing circumstances. 

Additional work needs to be done on focus.  The first notion of focus is “aiming” – monitoring for 
different things at different times.  We need the ability to collect different kinds of information in different 
scopes at different levels of granularity but need to limit the actual collection to those things actually 
helpful to the current need.  We are currently implementing a probe management infrastructure to handle 
the mechanics of dynamic probe placement/activation/deactivation.  The second notion of focus is “clarity 
of vision” – since we are not collecting everything, parts of the model/application are blurry (like a near-
sighted person without glasses).  The monitoring system needs to present the user with the blurred picture 
and the reasons for the blurs.  It could be there is no information about a particular process because there 
was no information available, because the process isn’t actually running, or because we just weren’t 
looking at the information when it was available.  Need to answer “What didn’t he know and why didn’t he 
know it?” 

Objective: Provide independent monitoring and diagnostic mechanisms to the Cougaar infrastructure to 
improve the understandability and reliability of Cougaar-based applications.  The mechanisms will:  

• Identify potential/allowable interactions between application-level agents/nodes 
based on specifications, defaults, and initialization/deployment actions.  

• Identify actual interactions between application-level agents/nodes based on 
runtime monitoring. 

• Determine if the observed interactions are allowable based on specs, defaults, and 
initializations. 

• Create local and system-wide maps of interaction patterns, and identify critical 
agents/nodes, choke points, and unused/underused agents/nodes. 

• Provide visualization of monitored behavior and a comparison of this to expected 
behavior based on specifications. 

These identifications, determinations and mappings provide needed inputs to the 
survivability mechanisms, policy decision-making mechanism, low-level policy 
implementers, and security mechanisms that will allow those mechanisms to make 
decisions.  All of this must be consistent with Cougaar architectural principles and 
security restrictions.  The latter is essential, since otherwise the monitoring system 
(which, after all is expected to have a clear view of how the system is operating) becomes 
a massive vulnerability. 
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(E-6)  White Paper – Ensuring the Robustness of Service Discovery 
Responses 

OBJS White Paper to the DARPA UltraLog Program, 2002, Mark Greaves Program 
Manager. 

Abstract: Description of how a variety of DASADA tools could be used within the 
DARPA UltraLog Program to ensure that dynamic binding of agents in consumer-
producer relationships creates legitimate and survivable configurations with respect to 
declarative rules applicable to collections rather than simply individual bindings.
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Ensuring the Robustness 
of 

 Service Discovery Responses 

Executive Summary 
Cougaar Service Discovery based on the Cougaar MatchMaker is aimed at providing 
improved flexibility and robustness by allowing agents to discover service providers 
based on capabilities expressed in advertisements and service requests (queries). The set 
of agents identified in response to such a “binding query” can be used more or less 
interchangeably to satisfy the request, allowing load balancing and adaptation in the 
event of agent or infrastructure failure.  While the individual agents identified as 
providing the requested service may be correct, adaptation requires that the set of agents 
be sufficiently large and robust that there are enough adequate alternatives and that the 
set of alternatives does not degrade subsequent to the initial service discovery attempt, 
leaving a requesting agent “high and dry” when it believes that it has fallback positions.   

We believe the current plan for Cougaar Service Discovery should be augmented in 
several ways to become more robust.  First, functional queries should be combined (via 
query modification) with extra-functional constraints (QoS and policy constraints) to 
ensure that queries result in the best result sets, taking into account all relevant factors.  
Second, we believe query relaxation techniques will be needed to locate acceptable 
matches when initial queries fail.  Third, we believe an efficient scheme is needed to re-
validate and rebind if services do not meet expectations or become unavailable.  Fourth, 
to ensure that rebinding remains feasible, we believe that the set of potential options 
should be periodically revalidated.   

We propose a collection of tools (compatible with the Cougaar architecture and time 
phased to match the projected Cougaar development schedule) to: (1) use policy 
statements to detect binding set inadequacies, (2) identify potential causes of such 
inadequacies, (3) suggest fixes, and (4) interact with Cougaar mechanisms to implement 
selected remedies.  

Background 
U*L CONOPS https://docs.ultralog.net/dscgi/ds.py/Get/File-3283/CONOPS-v0.54.doc 
requires a high degree of flexibility in creating and maintaining the command and support 
relationships that form the basis for all Cougaar agent interactions.  The Service 
Discovery MatchMaker (MM) currently under development will ultimately make it 
possible to create these relationships by “query”, matching requests for services with 
advertisements of services that can be provided by the available agents.  This will allow 
policies in the form of pre-packaged business rules to act as query modifiers (e.g., 
generalized constraints) to situation-specific specifications (e.g., unit location, OpTempo, 
command structure).  The twin goals are: (1) quick setup for military missions with the 
ability to adapt as the military mission objectives change, and (2) greatly improved 
robustness of the overall system.   
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Speed and responsiveness are attained because relatively little situation-specific 
customization will be required to create or change a logistics planning configuration. 
Configurations can then be automatically converted into specific inter-agent connections.   
Improved robustness is achieved because capability-based connections and discovery 
provide logistics and planning alternatives so that neither: (1) the failure of the Cougaar 
infrastructure (e.g., agent or communications failure), nor (2) loss of logistics assets (e.g., 
supply depot blown up), nor (3) change of the logistics configuration (e.g., a unit moves 
away from its supply base and must get supplies from elsewhere) are catastrophic. 

The Problem  
All of the above benefits rely on the assumption that a query results in a suitable 
collection of service providers (agents).  But what if that is not the case? How could it 
happen that the collection of service providers is not ‘suitable’? What could be done if it 
did?   

To begin with, we assume that the following things work properly (this is not to say that 
other checking to ensure these properties is not necessary, just that those tools are outside 
our effort): 

• MatchMaker correctly evaluates ontology-based queries using weighting functions 
specified in the query. 

• The ontologies used by MatchMaker are correct. 

• Agents that are found by MatchMaker either functionally do what they claim or the 
requesting agent can determine functional non-compliance and take corrective action. 

In other words, we are assuming that any agent in MatchMaker’s response set will either 
be correct or that the requesting agent can detect a problem and ignore a functionally 
incorrect agent.  Our concern instead is what happens if there is something undesirable 
about the set returned rather than with any individual member of that set.  The sets could 
be poor in several different ways: 

• The set is empty or contains only agents with too low a score to be acceptable. In this 
case, the binding attempt will fail.  The problem could be caused by a logistics 
problem (e.g., there is no supplier of truck batteries) or an infrastructure failure (e.g., 
the agent for the part supplier is unreachable). 

• Failure to bind may propagate back through a chain of agents, since if an agent cannot 
find a service, it may in its turn no longer be able to provide the services it is 
functionally capable of and thus would now be  an unacceptable choice for some 
other agent that had planned to use it.  For example, a wholesaling company may be 
able to sell both liquids and bulk solids.  A military depot requests flour from it.  The 
wholesaler tries to find a supplier for flour, but is unable to do so, so it is rejected as a 
source of flour, despite the fact that it is capable of delivering flour (if it could find 
it).  The binding failure ripples back from the wholesaler-to-supplier connection to 
the depot-to-wholesaler connection.  Further, the binding failure was caused by a 
parameter (flour) that flowed from depot to wholesaler to suppliers.  Tracking this 
down on-the-fly will be tricky without automated support. 
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• Some members of the set are functionally correct, but have some other aspect that 
makes them undesirable.  For example, a water provider may be too far away to be 
useful, but an incomplete specification of mode aspects fails to eliminate it. Worse, 
what happens if it becomes the top-ranked choice for some other reasons (e.g., 
advertised price), and gets used to the exclusion of a better alternative? 

• The set contains too few alternatives to be robust.  This causes two kinds of problems. 
First, just because an agent satisfies a binding request does not mean that it will be 
able to provide the service required of it in a given request during planning.  For 
example, a warehouse might normally contain truck axles, so binding to it would be 
reasonable.  However, when a particular request to ship truck axles is made, the 
warehouse may be empty. In this case, the requesting agent would like to have some 
potential alternate sources.  The quality and number of such alternates should be 
specifiable by a higher level policy.   

• Second, the set size shrinks after the query has been evaluated, leaving too few 
alternates.  This could happen because of the loss of some of the alternates (e.g., the 
alternate warehouses get destroyed, leaving only the primary) or because changes in 
some mode aspect of the requestor or alternate providers (e.g., one or the other 
moves) makes a previously reasonable relationship become undesirable.  

Undetected, the problems outlined above would make an application built on Cougaar 
less able to meet the Ultra*Log robustness goals.  Uncorrected by automated tools, the 
problems would increase the work-factor for administrators and slow down the 
configuration and repair of applications, making it impossible to meet the more 
aggressive Ultra*Log CONOPS adaptivity and ease of use goals.  

The Root Causes 
If MatchMaker works properly on correct ontologies, what can cause these problems?   

There are (at least) four underlying sources of these problems: incorrect or contradictory 
business rules, finding the correct tradeoff between ”precision” and “recall” in query 
specifications, insufficient logistics or Cougaar resources, and propagation of constraints. 

• Business rules will be used to express policy and constraints in many domains (e.g., 
purchasing regulations, security, product quality).  This will require a large number of 
rules developed by experts in many domains.  Getting this all correct and consistent is 
a daunting task.  One has only to consider that the FAR and DFARS (which have 
been in existence for a long time and cover only contractual issues) are not internally 
consistent.  Even if the rules are consistent, it is possible that they are too restrictive 
for a given situation: this is especially likely in degraded or emergency situations that 
the rules do not anticipate.  In such cases, a rigorous application of all the overlapping 
rules may preclude doing anything at all.  Humans can generally find a way around 
such problems; Cougaar needs a similar ability to deal with the possibility of 
conflicting rules.  This would be facilitated if it were possible to know which rules 
had been applied and which rules had caused alternatives to be rejected. 

• Cougaar uses weighted matching to support “approximate” or “ranked” matches.  
This is similar to a problem in the field of “information retrieval”, in which queries 
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are used to identify possibly relevant documents from a (library) collection. A long-
standing problem in that domain is the tradeoff between precision and recall; the 
ability to get only relevant documents and to get all the relevant documents. Cougaar 
faces the same issue; it is desirable to find all the relevant providers without 
introducing irrelevant providers.  It is generally accepted in information retrieval that 
it is impossible to have perfect precision and recall simultaneously.  Finding the right 
tradeoff between these two objectives, especially in a dynamic Cougaar environment 
where the set of potential providers changes rapidly, will be difficult.  Thus, a 
mechanism to detect unsatisfactory result sets and tighten or loosen a query is 
necessary. This would be facilitated if it were possible to know, going in, what factors 
had contributed to the low quality of the result set. 

• There may simply not be any (or enough) logistics resources providing the desired 
service with the required mode aspects.  For example, a logistics robustness policy 
might state that there be at least three fuel providers in a theater, but what if there are 
only two?  It is desirable that this deficit be detected during the matchmaking process 
so that either a waiver of the policy can be consciously made or an additional fuel 
source deployed.  

• Matchmaking queries will be parameterized based on setup information (e.g., the 
physical location of the logistics unit represented by the agent) or on information 
passed transitively from another service request (e.g., a request by B to A to deliver 
truck axles to B causes A to look for a collection of C’s that sell truck axles).  Such 
(possibly transitive) parameterization is not subject to design-time verification and is 
a potential source of any of the above problems. It is a leap of faith to assume that all 
this will always work correctly 

Nature of the proposed solution.   
We propose a set of tools to specify policies related to binding set quality, to determine 
violations of those policies, to determine the cause of the violations, and to propose 
(re)solutions.  All of these tools will be integrated into the Cougaar framework; in 
particular, they will interact with Cougaar Service Discovery, Adaptivity Engine, and 
Policy Management.    

Specifically, we propose the following, integrated into Cougaar: 

• Tools for defining and managing policy “meta-rules” describing desired and required 
properties of binding sets. 

• A representative set of parameterizable meta-rules for common logistics policies as 
defined in Ultra*Log CONOPS. 

• A tool to apply the policy meta-rules to MatchMaker output to determine if binding 
sets violate policies. 

• Auditing tools to periodically determine if  binding sets have changed to violate 
policy.  Use of these tools may themselves be policy-driven (e.g., frequency of re-
validation may depend on such things as criticality of the connection and likelihood 
of change to the set membership). 
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• A tool to present the various bindings of agents to system administrators so that these 
administrators can easily validate the reasonableness of the bindings and interactively 
take actions to react to problems. 

• A tool to identify potential causes of binding set policy violations and suggest 
solutions in the form of modifications to queries, relaxation of rules, or deployment of 
additional logistics or Cougaar resources. 

Details, Architectural Fit & Technology to Build On 
The proposed tools are not intended to be either a replacement for, or a significant 
modification of, the planned Cougaar Service Discovery mechanisms.  Instead, they are 
intended to pick up where Service Discovery leaves off.  Note that instead of attempting 
to determine if the individual services discovered are adequate (the job of Service 
Discovery), we propose to determine if the collection of services discovered is adequate.  
This is an entirely different problem, but one that is essential to achieve robustness.   

What follows is a list of the individual tools we plan to provide, their fit with the rest of 
the Cougaar system, and the technology starting point for each.  

Tools for Defining & Managing Meta-Rules:  We believe that the meta-rules can be 
represented in DAML-S as are other rules, advertisements, and queries in Cougaar 
Service Discovery.   This will allow us to use existing and planned Cougaar tools for 
defining and manipulating the meta-rules.  Very little effort will be required here. 

Representative Policy Meta-Rules:  Ultra*Log CONOPS describes scenario vignettes that 
can be used to define a set of such rules for use in testing.  We will define rules 
applicable to the 2003 test cases. 

Applying Meta-Rules to Binding Sets:  Rules are predicates on properties of the set.  We 
expect to be able to use an existing rule engine to apply these rules to the set returned by 
Cougaar Service Discovery.  In the event this set does not satisfy the rules, an exception 
will be raised.  This could lead to the application of an automatic repair strategy via the 
Adaptivity Engine, administrator intervention to take a corrective action, or simply a 
warning to the CSMART console. 

Audit Tools:  Because of the danger that an acceptable binding set may degrade over 
time, it is desirable to periodically re-evaluate such sets.  The rule-application tool 
described above will be packaged (most likely as either a Cougaar Management Agent or 
Rover Agent) to do this.  Because service discovery is potentially expensive, policy will 
be specified to determine the conditions under which re-evaluation takes place.  Our 
belief at present is that this policy should take into account the criticality of the binding 
being supported (e.g., frequently used connections or connections responsible for highly 
critical parts of the logistics plan), the likelihood that the binding set will degrade below 
acceptable levels (e.g., a forward depot is more likely to be lost than a CONUS base and 
binding sets with many alternatives are more robust than those barely exceeding the 
threshold), the load on the Discovery Service (e.g., if the DS is busy making new 
bindings, it should not be further loaded with checking), and general infrastructure load 
(e.g., communications availability). 



 

 
96

Administrator Interface:  The checker (whether operating at discovery time or as part of 
background evaluation) fills the role of a Cougaar sensor.  Bindings associated with a 
given agent, node, or community, should be viewable graphically and textually.  An 
administrator (possibly local to the agent, node, or community) will often be able to 
detect anomalies that slip past rule checkers.  As such, the administrator should be able to 
signal exceptions through these tools in exactly the same way as the checking tool itself. 

Identifying Causes of Binding Set Problems:   This has several levels of sophistication, 
each requiring more effort.  We anticipate providing these capabilities incrementally in 
roughly the order described here.  At the first level, the checker will simply identify 
which rule or rules were violated.  This requires no additional interaction with the Service 
Discovery MatchMaker and can be provided immediately.  The next step requires 
extensions to the MatchMaker, so it will have to be done in conjunction with its 
developers.  There appear to be three reasons that a binding set is inadequate: failure to 
satisfy the binding query, weightings and thresholds that reject otherwise acceptable 
response items, and failure to satisfy the business rules that condition the query 
evaluation.  The ways in which these are identified appear to be different. 

• Failing to satisfy the binding query.  In this case, the collection of agents whose 
advertisements satisfy the query predicate is insufficient.  If the query predicate is 
complex, it may be difficult to determine why this occurs.  Related work done in the 
mid-1980’s to mid-1990’s in the database field developed techniques to figure out 
what part of a query caused anomalous results by tracking the sizes of intermediate 
result sets computed during the evaluation process [work on query modification in 
Ingres and System R, work on cooperative response by several groups, work by 
Jonathan King and Gio Wiederhold at Stanford on semantic query optimization, and 
work on query relaxation by Wesley Chu at UCLA].  Points in the evaluation where 
set size either exploded or shrank to an unexpectedly small size (or in the Cougaar 
case to below the acceptance threshold) were flagged, with the part of the query being 
evaluated at that point being a suspected source of the problem.  The system was not 
foolproof, but did help with the identification process.  This might be able to be 
adapted for Cougaar, the principle changes being that Cougaar queries and 
advertisements are not relations and that query weighting needs to be considered.  
This would require MatchMaker to expose the evaluation order and statistics on the 
intermediate results.  It would not require any MatchMaker modifications beyond this 
increased visibility. 

• Weighting and threshold problems.  This may be partially handled by the planned 
Service Discovery weighting scheme, but the idea is to identify any weighting terms 
that are consistently not satisfied (e.g., the highly weighted term “US flagged carrier” 
is never satisfied, causing no carriers to be found with sufficiently high weight to pass 
the threshold).  These should be suspected as flawed or overly restrictive.  Again, 
MatchMaker visibility is required to determine this information. 

• Restrictive business rules.  Agents that satisfy the query predicate may be rejected 
due to combinations of business rules.   If MatchMaker exposed statistics on the 
number of potential responses that violated any business rules that fired, it would be 
possible to identify potential business rule conflicts or rules whose application might 
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be too restrictive for the situation.  These could either be handled by an override 
policy or thrown to an administrator via CSMART. 

Suggesting Solutions: The information that can be collected above may imply a solution 
to a human administrator,.  However, the data sets involved may be of such a size as to 
make determining such a solution infeasible.  We propose to build tools that can make 
this easier, and may even allow certain first-level solutions to be automated. Grouping 
and ranking the potential sources of binding set inadequacy according to impact and 
likelihood would help make sense out of a potentially large information collection.  
What-iffing tools could allow checking the effect of a proposed changes to query, rules, 
policies, or weighting/thresholds on the binding query result without causing an actual 
bind to occur.  This would make use of the Service Discovery without changes, but the 
originator of the request would be the what-iffing tool rather than an agent trying to bind.  
An issue would be managing the load that this creates on Service Discovery, since 
massive what-iffing could prevent actual bindings from taking place.  If Service 
Discovery optimizes queries, the query evaluation plan may not have an obvious 
correspondence with the original query (since the optimal evaluation order may differ 
from the order in which the predicate was expressed).  If this is the case, it will be 
necessary to either recreate this correspondence or interact with MatchMaker to cause it 
to be exposed.  This is a more difficult problem, but the DBMS query modification work 
mentioned above resolved this issue, at least in the relational database context. 

Implementing Solutions.   Once a corrective action is decided upon, whether by a human 
administrator or by an automated policy, actions need to be taken.  This requires making 
some change to the conditions that caused the failure and then re-executing the discovery 
attempt.  An issue in the re-execution is whether the requesting agent must be aware of 
this or whether it can happen transparently.  Correcting the causes of the failure naturally 
requires connections to other parts of Cougaar.  Actions that could be taken include: 

• Change the query predicate, weightings, or threshold.  This would require interaction 
with the requesting agent.  As such, an additional interface for agents would likely 
need to be defined.  An issue is whether the change would apply to only the current 
discovery attempt or to all future discovery attempts. 

• Change the current policy or override a portion of the policy.  An issue is the scope of 
the change (does it apply only to the current request, the requesting agent, all agents 
of that type, all agents in that community, globally?).  This kind of change should be 
able to be made by an administrator. 

• Deploy (or change the properties of) one or more logistics resources.  This requires 
reaching outside of Ultra*Log. 

• Change (fix) a business rule.  This is a heavyweight action and should not be 
expected to be made on-line. 

Competing approaches  
Cougaar does not currently provide capabilities such as those described above.  The 
Ultra*Log Service Discovery group is not currently discussing these issues.  Cougaar 
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Policy Management might specify policies to respond to deficiencies in binding sets, but 
would still require mechanisms to detect and categorize such problems prior to policy 
application.  The Cougaar Adaptivity Engine likewise represents a way in which to 
respond to problems but does not itself detect or categorize the problems.   

Deliverables Schedule 
2003 

In 2003, we will be developing tools that allow detection of problems with the original 
binding sets created by Cougaar Service Discovery.  Determining the causes of problems 
will be deferred until 2004.  This is for three reasons: 

• This allows us to get the basic mechanisms and architectural fit correct before 
attempting to be too sophisticated. 

• Work proposed for 2003 requires only the ability to examine the standard outputs of 
the Cougaar Service Discovery MatchMaker, whereas MatchMaker extensions to 
expose some aspects of its internal operations are required for the advanced 
capabilities.  The Discovery Service is still early in its development and is operating 
on a different development cycle than most of the rest of Ultra*Log (having started in 
summer).  We believe that we are more likely to get significant design cycles with the 
Service Discovery developers once their basic capabilities are completed. 

• A smaller initial effort allows us to demonstrate an important capability at relatively 
low cost with a roadmap toward a more comprehensive capability in 2004 and 
beyond. 

Specific capabilities to be delivered for integration into the 2003 Cougaar Release are: 

• Tools for defining and managing policy “meta-rules” describing desired and required 
properties of binding sets. 

• Representative policies for the properties of binding sets. 

• A tool to apply the policy meta-rules to MatchMaker output to determine if binding 
sets violate policies. 

• A tool to present the various bindings of agents to system administrators so that these 
administrators can easily validate the reasonableness of the bindings and interactively 
take actions to react to problems. 

• Connection to either the Cougaar Discovery Service or Adaptivity Engine (whichever 
is most appropriate) to take corrective actions in the event a binding set is inadequate.  
Most responses in the first year will either be simple or will involve administrator 
actions. 

2004 and Beyond 

In 2004 and beyond, we will provide:  

• Audit tools to periodically determine if  binding sets have changed to violate policy. 

• Representative policies to drive the audit tools. 
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• A tool to identify potential causes of binding set policy violations and suggest 
solutions in the form of modifications to queries, relaxations of rule, or deployment of 
additional logistics or Cougaar resources. 

The specific deliverables and schedule after the first year depend on Ultra*Log needs as 
discovered over the course of work.



 

 
100

(E-7) Report on Demonstrations of ProbeMeister Technology to the 
UltraLog Program 

 Excerpt from the February, 2002 OBJS Monthly Progress Report from the DARPA 
UltraLog Program. 

Abstract: Describes demonstrations of three kinds of uses of ProbeMeister within the 
UltraLog program for Red Teaming, distributed stress injection and data collection, and 
distributed debugging of a messaging subsystem. 

 

Excerpt from February 2003 MsgLog Progress Report 

To the DARPA UltraLog Program 

 
Progress. In advance of the CDR and our planned meeting there with Mark Greaves, we 
prepared three demonstrations of ways in which OBJS' ProbeMeister (PM is a dynamic 
software instrumentation tool for Java developed in the DASADA program) could be of 
use on the UltraLog program.  One demo showed how PM could be used as a Red Team 
attack tool, allowing infiltrators to modify agent blackboard contents unbeknownst and 
thereby modify the result of planning.  Another showed how PM could be used by the 
Engineering Test and Assessment teams to inject stresses and monitor defensive actions 
without requiring any cooperation from the developers (no Cougaar Events).  The third 
demonstrated our MsgAudit tool as an example of how to use PM for regression testing 
and debugging, even allowing dynamic code insertion and monitoring of the Java, 
thereby facilitating debugging control flows that cross the application/JVM boundary and 
those that involve multiple JVM's and hosts, as Cougaar does.  We showed these demos 
to several people at the CDR, including Mark Greaves, Eric Rickard and Manoj 
Srivastava, and expect at least SRI, STDC, and Sandia to evaluate PM for use in their 
2003 work. 

                                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


